Journal of Materials Science

, Volume 52, Issue 4, pp 2270–2284 | Cite as

Experimental investigation of phase equilibria in the Ti–Al–Mo ternary system

Original Paper


Phase equilibria in Ti–Al–Mo ternary system are of fundamental importance to better acquire the phase-forming regulation of TiAl-based alloys. In this paper, phase relations in this system have been investigated with Ti–TiAl–Mo diffusion triples combined with key equilibrated alloys. Five isothermal sections of the Ti–Al–Mo ternary system at 1473, 1373, 1273, 1173, and 1073 K were experimentally determined by means of electron probe microanalysis, scanning electron microscope, and X-ray diffraction. The TiAl and TiAl3 phases show wide ternary composition ranges, while the solubility of Mo in the Ti3Al and αTi phases is relatively limited. The solubility of Al in the β(Ti, Mo) phase decreases from 49.0 at.% at 1473 K to 39.9 at.% at 1073 K while that of Ti in the AlMo3 phase decreases from 25.4 at.% at 1473 K to 20.8 at.% at 1073 K. Moreover, the ternary compound σ forms at a temperature between 1423 and 1373 K through a peritectoid reaction β(Ti, Mo) + AlMo3 → σ. A peri-eutectoid invariant reaction β(Ti, Mo) + AlMo3 → σ + TiAl3 at 1373–1273 K was further deduced and the existence of another invariant reaction β(Ti, Mo) + TiAl3 → σ + TiAl at a temperature between 1273 and 1173 K was also confirmed. The established phase equilibria of the Ti–Al–Mo ternary system may provide essential data required for the construction of reliable thermodynamic assessment of the Ti–Al–Mo system.


Electrical Discharge Machine Isothermal Section TiAl3 Lamellar Microstructure Equilibrate Alloy 
These keywords were added by machine and not by the authors.



Financial supports by grants from the Major State Basic Research Development Programs of China (Nos. 2014CB6644002 and 2012CB619501) and National Key Research and Development Plan (No. 2016YFB0701301) are gratefully acknowledged. The Project of Innovation-driven Plan in Central South University (No. 2015CX004) and Project supported by State Key Laboratory of Powder Metallurgy (Central South University, Changsha, China) are gratefully acknowledged.

Supplementary material

10853_2016_520_MOESM1_ESM.doc (2.5 mb)
Supplementary material 1 (DOC 2566 kb)


  1. 1.
    Leyens C, Peters M (2003) Titanium and titanium alloys. Wiley, WeinheimCrossRefGoogle Scholar
  2. 2.
    Froes F, Suryanarayana C, Eliezer D (1992) Synthesis, properties and applications of titanium aluminides. J Mater Sci 27:5113–5140. doi: 10.1007/BF00553381 CrossRefGoogle Scholar
  3. 3.
    Clemens H, Mayer S (2013) Design processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys. Adv Eng Mater 15:191–215CrossRefGoogle Scholar
  4. 4.
    Yamaguchi M, Inui H, Ito K (2000) High-temperature structural intermetallics. Acta Mater 48:307–322CrossRefGoogle Scholar
  5. 5.
    Clemens H, Wallgram W, Kremmer S, Guther V, Otto A, Bartels A (2008) Design of novel β-solidifying TiAl alloys with adjustable β/B2-phase fraction and excellent hot-workability. Adv Eng Mater 10:707–713CrossRefGoogle Scholar
  6. 6.
    Kainuma R, Fujita Y, Mitsui H, Ohnuma I, Ishida K (2000) Phase equilibria among α (hcp), β (bcc) and γ (L10) phases in Ti–Al base ternary alloys. Intermetallics 8:855–867CrossRefGoogle Scholar
  7. 7.
    Chen G, Peng Y, Zheng G, Qi Z, Wang M, Yu H, Dong C, Liu CT (2016) Polysynthetic twinned TiAl single crystals for high-temperature applications. Nat Mater 15:876–881CrossRefGoogle Scholar
  8. 8.
    Li YG, Loretto MH (1994) Microstructure and fracture behaviour of Ti–44Al–xM derivatives. Acta Metall Mater 42:2913–2919CrossRefGoogle Scholar
  9. 9.
    Das S, Mishurda JC, Allen WP, Perepezko JH, Chumbley LS (1993) Development of (γ + β) lamellar microstructure in a Ti45Al50Mo5 alloy. Scr Metall Mater 28:489–494CrossRefGoogle Scholar
  10. 10.
    Lee HN, Johnson DR, Inui H, Oh MH, Wee DM, Yamaguchi M (2000) Microstructural control through seeding and directional solidification of TiAl alloys containing Mo and C. Acta Mater 48:3221–3233CrossRefGoogle Scholar
  11. 11.
    Witusiewicz VT, Bondar AA, Hecht U, Rex S, Velikanova TY (2008) The Al–B–Nb–Ti system: III. Thermodynamic re-evaluation of the constituent binary system Al–Ti. J Alloys Compd 465:64–77CrossRefGoogle Scholar
  12. 12.
    Schuster JC, Palm M (2006) Reassessment of the binary aluminum–titanium phase diagram. J Phase Equilib 27:255–277CrossRefGoogle Scholar
  13. 13.
    Chung HJ, Shim JH, Lee DN (1999) Thermodynamic evaluation and calculation of phase equilibria of the Ti–Mo–C–N quaternary system. J Alloys Compd 282:142–148CrossRefGoogle Scholar
  14. 14.
    Shim JH, Oh CS, Lee DN (1996) A thermodynamic evaluation of the Ti–Mo–C system. Metall Mater Trans B 27B:955–966CrossRefGoogle Scholar
  15. 15.
    Cupid DM, Fabrichnaya O, Ebrahimi F, Seifert HJ (2010) Thermodynamic assessment of the Al–Mo system and of the Ti–Al–Mo System from 0 to 20 at.% Ti. Intermetallics 18:1185–1196CrossRefGoogle Scholar
  16. 16.
    Du ZM, Guo CP, Li CR, Zhang WJ (2009) Thermodynamic description of the Al–Mo and Al–Fe–Mo systems. J Phase Equilib 30:487–501CrossRefGoogle Scholar
  17. 17.
    Eumann M, Sauthoff G, Palm M (2006) Re-evaluation of phase equilibria in the Al–Mo system. Int J Mater Res 97:1502–1511CrossRefGoogle Scholar
  18. 18.
    Jin ZP (1981) A study of the range of stability of phase in some ternary systems. Scand J Metall 10:279–287Google Scholar
  19. 19.
    Zhao JC (2001) A combinatorial approach for structural materials. Adv Eng Mater 3:143–147CrossRefGoogle Scholar
  20. 20.
    Zhao JC, Jackson MR, Peluso LA, Brewer LN (2002) A diffusion multiple approach for the accelerated design of structural materials. MRS Bull 27:324–329CrossRefGoogle Scholar
  21. 21.
    Zhao JC (2004) Reliability of the diffusion-multiple approach for phase diagram mapping. J Mater Sci 39:3913–3925. doi: 10.1023/B:JMSC.0000031472.25241.c5 CrossRefGoogle Scholar
  22. 22.
    Van Loo FJJ (1990) Multiphase diffusion in binary and ternary solid-state systems. Prog Solid State Chem 20:47–99CrossRefGoogle Scholar
  23. 23.
    Banerjee D, Krishnan RV, Vasu KI (1980) A reconsideration of phase relations in the Ti–Al–Mo and Ti–Al systems. Metall Trans A 11A:1095–1105CrossRefGoogle Scholar
  24. 24.
    Chen Z, Jones IP, Small CJ (1997) Structure of the alloy Ti–50Al–15Mo between 800 and 1400 °C. Acta Mater 45:3801–3815CrossRefGoogle Scholar
  25. 25.
    Kimura M, Hashimoto K, Morikawa H (1992) Study on phase stability in Ti–Al–X systems at high temperatures. Mater Sci Eng 152:54–59CrossRefGoogle Scholar
  26. 26.
    Morris MA, Li YG, Leboeuf M (1994) Variation of the phase distribution in a Ti–44Al–2Mo alloy by annealing: influence on its strength and ductility. Scr Metall Mater 31:449–454CrossRefGoogle Scholar
  27. 27.
    Kimura M, Hashimoto K (1999) High-temperature phase equilibria in Ti–Al–Mo system. J Phase Equilib 20:224–230CrossRefGoogle Scholar
  28. 28.
    Ge DM, Pylaeva E (1966) Investigation of the phase equilibrium of the Ti–Al–Mo system in the titanium-rich alloy field. Titan Alloys 10:11–18Google Scholar
  29. 29.
    Eremenko VN, Tretyachenko LA, Sukhaya SA, Petukh VM (1990) Investigation of the structure of alloys of the Ti–Mo–Al system. Akad Nauk Ukr 83–135Google Scholar
  30. 30.
    Rashkova B, Hahn KS, Brabetz M, Zhang Z, Schoberl T, Clemens H, Mayer S (2015) Microstructural evolution and grain refinement in an intermetallic titanium aluminide alloy with a high molybdenum content. Int J Mater Res 106:725–731CrossRefGoogle Scholar
  31. 31.
    Zangvil A, Osamura K, Murakami Y (1975) Determination of phase equilibrium in the Ti-rich Ti–Mo–Al ternary system using the X-ray microanalyser. Metal Sci 9:27–31CrossRefGoogle Scholar
  32. 32.
    Böhm H, Löhberg K (1958) A superstructure CsCl type phase in the titanium–molybdenum–aluminium system. Z Metallkd 49:173–178Google Scholar
  33. 33.
    Hansen RT, Raman A (1970) Alloy chemistry of σ(βU)-phases. III. σ phases with non-transition elements. Z Metallkd 61:115–120Google Scholar
  34. 34.
    Hamajima T, Luetjering G, Weissmann S (1972) Microstructure and phase relations for Ti–Mo–Al alloys. Metall Trans A 3:2805–2810CrossRefGoogle Scholar
  35. 35.
    Nino R, Fujinaka J, Shimamura H, Miura S, Mohri T (2003) Phase equilibria and microstructure evolution of Al–Mo–Ti ternary alloys. Intermetallics 11:611–623CrossRefGoogle Scholar
  36. 36.
    Tretyachenko L (2005) Aluminum-Molybdenum-Titanium. In: Martienssen W (ed) Landolt-Boernstein New Series IV, vol (11). Plenum Press, New York, pp 287–316Google Scholar
  37. 37.
    Singh AK, Banerjee D (1997) Transformations in α2 + γ titanium aluminide alloys containing molybdenum: Part II. Heat treatment. Metall Mater Trans A 28:1745–1753CrossRefGoogle Scholar
  38. 38.
    Raghavan V (2005) Al–Mo–Ti (aluminum–molybdenum–titanium). J Phase Equilib 26:357–359CrossRefGoogle Scholar
  39. 39.
    Raghavan V (2011) Al–Mo–Ti (aluminum–molybdenum–titanium). J Phase Equilib 32:61–63CrossRefGoogle Scholar
  40. 40.
    Schmoelzer T, Mayer S, Sailer C, Haupt F, Guther V, Staron P, Liss KD, Clemens H (2011) In situ diffraction experiments for the investigation of phase fractions and ordering temperatures in Ti–44at%Al–(3–7)at%Mo alloys. Adv Eng Mater 13:306–311CrossRefGoogle Scholar
  41. 41.
    Kenel C, Leinenbach C (2016) Influence of Nb and Mo on microstructure formation of rapidly solidified ternary Ti–Al–(Nb, Mo) alloys. Intermetallics 69:82–89CrossRefGoogle Scholar
  42. 42.
    Zhu J, Zhang C, Cao WS, Chen SL, Zhang F, Park JS, Yi SH (2015) Molar volume modeling of Ti–Al–Nb and Ti–Al–Mo ternary systems. JOM 67:1881–1885CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaPeople’s Republic of China
  2. 2.Powder Metallurgy Research InstituteCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations