Journal of Materials Science

, Volume 52, Issue 4, pp 1883–1897 | Cite as

Structural relationship between random copolyimides and their carbon fibers

  • Li Cao
  • Mengying Zhang
  • Hongqing Niu
  • Jingjing Chang
  • Weiwei Liu
  • Huichuan Yang
  • Weiyu Cao
  • Dezhen Wu
Original Paper


A series of polyimide (PI) fibers synthesized from pyromellitic dianhydride (PMDA), 4,4′-oxydianiline (ODA), and p-phenylenediamine (p-PDA) were prepared by a two-step wet-spinning process. The prepared PI fibers were then carbonized with the increasing temperatures up to 1500 °C under a high-purity nitrogen atmosphere. The effects of ODA/p-PDA molar ratios on the chemical structure, microstructure, chain orientation, and structural evolutions of the PI fibers were systematically investigated. The elemental composition, morphology, and aggregation structure after carbonization were also analyzed. The results showed that different chemical compositions have greatly influenced the aggregation structures of the resulting PI and carbon fibers. The PI fibers showed increased crystallinity and orientation degree with the decreased ODA moieties, while the corresponding PI-based carbon fibers (CFs) exhibited perfect graphitic structures. The CFs derived from PMDA/p-PDA PI backbone with flat chains exhibited a well-defined graphite structure with d 002 of 0.349 nm and I D/I G of 1.442. In addition, the carbon yield of the prepared PI-based carbon fibers reached more than 95 %.



The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (NSFC, Project No. 51373008) and the Higher School Specialized Research Fund for Doctoral Priority Areas of Development Project (No. 20130010130001).


  1. 1.
    Kobets LP, Deev IS (1998) Carbon fibres: structure and mechanical properties. Compos Sci Technol 57(12):1571–1580. doi: 10.1016/s0266-3538(97)00088-2 CrossRefGoogle Scholar
  2. 2.
    Fitzer E (1987) The future of carbon-carbon composites. Carbon 25(2):163–190CrossRefGoogle Scholar
  3. 3.
    Jing M, Wang CG, Wang Q, Bai YJ, Zhu B (2007) Chemical structure evolution and mechanism during pre-carbonization of PAN-based stabilized fiber in the temperature range of 350–600°C. Polym Degrad Stab 92(9):1737–1742. doi: 10.1016/j.polymdegradstab.2007.05.020 CrossRefGoogle Scholar
  4. 4.
    Inagaki M, Ohta N, Hishiyama Y (2013) Aromatic polyimides as carbon precursors. Carbon 61:1–21. doi: 10.1016/j.carbon.2013.05.035 CrossRefGoogle Scholar
  5. 5.
    Newell JA, Rogers DK, Edie DD, Fain CC (1994) Direct carbonization of PBO fiber. Carbon 32(4):651–658. doi: 10.1016/0008-6223(94)90086-8 CrossRefGoogle Scholar
  6. 6.
    Vázquez-Santos MB, Geissler E, László K, Rouzaud J-N, Martínez-Alonso A, Tascón JMD (2012) Comparative XRD, Raman, and TEM study on graphitization of PBO-derived carbon fibers. J Phys Chem C 116(1):257–268. doi: 10.1021/jp2084499 CrossRefGoogle Scholar
  7. 7.
    Huang SB, Jiang ZY, Ma XY, Qiu XP, Men YF, Gao LX, Ding MX (2013) Properties, morphology and structure of BPDA/PPD/ODA polyimide fibres. Plast, Rubber Compos 42(10):407–415. doi: 10.1179/1743289811y.0000000053 CrossRefGoogle Scholar
  8. 8.
    Dong J, Yin CQ, Zhang ZX, Wang XY, Li HB, Zhang QH (2014) Hydrogen-bonding interactions and molecular packing in polyimide fibers containing benzimidazole units. Macromol Mater Eng 299(10):1170–1179. doi: 10.1002/mame.201400081 CrossRefGoogle Scholar
  9. 9.
    Inagaki M, Meng LJ, Ibuki T, Sakai M, Hishiyama Y (1991) Carbonization and graphitization of polyimide film “Novax”. Carbon 29(8):1239–1243. doi: 10.1016/0008-6223(91)90042-h CrossRefGoogle Scholar
  10. 10.
    Inagaki M, Hishiyama Y, Kaburagi Y (1994) Effect of heating rate during carbonization on graphitization of carbon films derived from aromatic polyimides. Carbon 32(4):637–639. doi: 10.1016/0008-6223(94)90083-3 CrossRefGoogle Scholar
  11. 11.
    Inagaki M, Ibuki T, Takeichi T (1992) Carbonization behavior of polyimide films with various chemical structures. Fibre Chem 44(3):521–525. doi: 10.1002/app.1992.070440316 Google Scholar
  12. 12.
    Inagaki M, Harada S, Sato T, Nakajima T, Horino Y, Morita K (1989) Carbonization of polyimide film “Kapton”. Carbon 27(2):253–257CrossRefGoogle Scholar
  13. 13.
    Isono Y, Yoshida A, Hishiyama Y, Kaburagi Y (2004) Carbonization and graphitization of shavings filed away from Kapton. Carbon 42(8–9):1799–1805. doi: 10.1016/j.carbon.2004.03.012 CrossRefGoogle Scholar
  14. 14.
    Inagaki M, Tachikawa H, Nakahashi T, Konno H, Hishiyama Y (1998) The chemical bonding state of nitrogen in kapton-derived carbon film and its effect on the graphitization process. Carbon 36(7–8):1021–1025. doi: 10.1016/s0008-6223(97)00236-4 CrossRefGoogle Scholar
  15. 15.
    Sazanov YN, Gribanov AV, Lysenko VA (2009) The role of nitrogen atoms in forming the carbon structure in the carbonization of polymer composites. Fibre Chem 40(4):355–364. doi: 10.1007/s10692-009-9067-4 CrossRefGoogle Scholar
  16. 16.
    Smirnova VE, Gofman IV, Maritcheva TA, Yudin VE, Eto K, Takeichi T, Kaburagi Y, Hishiyama Y (2007) The effect of different orientations in rigid rod polyimide films on the graphitized products. Carbon 45(4):839–846. doi: 10.1016/j.carbon.2006.11.012 CrossRefGoogle Scholar
  17. 17.
    Takeichi T, Endo Y, Kaburagi Y, Hishiyama Y, Inagaki M (1996) Carbonization and graphitization of polyimide films: polyamide acid methyl ester of PMDA/PDA as a precursor. J Appl Polym Sci 61(9):1571–1578CrossRefGoogle Scholar
  18. 18.
    Takeichi T, Eguchi Y, Kaburagi Y, Hishiyama Y, Inagaki M (1998) Carbonization and graphitization of Kapton-type polyimide films prepared from polyamide alkyl ester. Carbon 36(1–2):117–122. doi: 10.1016/s0008-6223(97)00155-3 CrossRefGoogle Scholar
  19. 19.
    Takeichi T, Endo Y, Kaburagi Y, Hishiyama Y, Inagaki M (1998) Carbonization and graphitization of polyimide films: effect of size of leaving group at imidization. Appl Polym Sci 68(10):1613–1620CrossRefGoogle Scholar
  20. 20.
    Takeichi T, Eguchi Y, Kaburagi Y, Hishiyama Y, Inagaki M (1999) Carbonization and graphitization of BPDA/PDA polyimide films: effect of structure of polyimide precursor. Carbon 37(4):569–575CrossRefGoogle Scholar
  21. 21.
    Takeichi T, Zuo M, Hasegawa M (2001) Role of the in-plane orientation of polyimide films in graphitization. J Polym Sci 39(23):3011–3019. doi: 10.1002/polb.10050 CrossRefGoogle Scholar
  22. 22.
    Yang KS, Edie DD, Lim DY, Kim YM, Choi YO (2003) Preparation of carbon fiber web from electrostatic spinning of PMDA-ODA poly(amic acid) solution. Carbon 41(11):2039–2046. doi: 10.1016/s0008-6223(03)00174-x CrossRefGoogle Scholar
  23. 23.
    Chung GS, Jo SM, Kim BC (2005) Properties of carbon nanofibers prepared from electrospun polyimide. J Appl Polym Sci 97(1):165–170. doi: 10.1002/app.21742 CrossRefGoogle Scholar
  24. 24.
    Niu HQ, Huang MJ, Qi SL, Han EL, Tian GF, Wang XD, Wu DZ (2013) High-performance copolyimide fibers containing quinazolinone moiety: preparation, structure and properties. Polymer 54(6):1700–1708. doi: 10.1016/j.polymer.2013.01.047 CrossRefGoogle Scholar
  25. 25.
    Zhang MY, Niu HQ, Lin ZW, Qi SL, Chang JJ, Ge QY, Wu DZ (2015) Preparation of high performance copolyimide fibers via increasing draw ratios. Macromol Mater Eng 300(11):1096–1107. doi: 10.1002/mame.201500126 CrossRefGoogle Scholar
  26. 26.
    Chang JJ, Niu HQ, He M, Sun M, Wu DZ (2015) Structure-property relationship of polyimide fibers containing ether groups. J Appl Polym Sci 132(34):42474CrossRefGoogle Scholar
  27. 27.
    Chang JJ, Niu HQ, Zhang MY, Ge QY, Li Y, Wu DZ (2015) Structures and properties of polyimide fibers containing ether units. J Mater Sci 50(11):4104–4114. doi: 10.1007/s10853-015-8966-4 CrossRefGoogle Scholar
  28. 28.
    Zhang MY, Niu HQ, Qi SL, Tian GF, Wang XD, Wu DZ (2014) Structure evolutions involved in the carbonization of polyimide fibers with different chemical constitution. Mater Today Commun 1(1–2):1–8. doi: 10.1016/j.mtcomm.2014.08.001 Google Scholar
  29. 29.
    Wang S, Chen ZH, Ma WJ, Ma QS (2006) Influence of heat treatment on physical–chemical properties of PAN-based carbon fiber. Ceram Int 32(3):291–295. doi: 10.1016/j.ceramint.2005.02.014 CrossRefGoogle Scholar
  30. 30.
    Belenkov EA (2001) Formation of graphite structure in carbon crystallites. Inorg Mater 37(9):928–934. doi: 10.1023/a:1011601915600 CrossRefGoogle Scholar
  31. 31.
    Jawhari T, Roid A, Casado J (1995) Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 33(11):1561–1565. doi: 10.1016/0008-6223(95)00117-v CrossRefGoogle Scholar
  32. 32.
    Niu HQ, Qi SL, Han EL, Tian GF, Wang XD, Wu DZ (2012) Fabrication of high-performance copolyimide fibers from 3,3′,4,4′-biphenyltetracarboxylic dianhydride, p-phenylenediamine and 2-(4-aminophenyl)-6-amino-4(3H)-quinazolinone. Mater Lett 89:63–65. doi: 10.1016/j.matlet.2012.08.088 CrossRefGoogle Scholar
  33. 33.
    Zhao S, Shi ZQ, Wang CY, Chen MM (2008) Structure and surface elemental state analysis of polyimide resin film after carbonization and graphitization. J Appl Polym Sci 108(3):1852–1856. doi: 10.1002/app.27697 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Li Cao
    • 1
  • Mengying Zhang
    • 1
  • Hongqing Niu
    • 1
  • Jingjing Chang
    • 1
  • Weiwei Liu
    • 1
  • Huichuan Yang
    • 1
  • Weiyu Cao
    • 2
  • Dezhen Wu
    • 1
  1. 1.State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijingChina
  2. 2.State Key Laboratory of Organic-Inorganic CompositesBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations