Advertisement

Journal of Materials Science

, Volume 52, Issue 3, pp 1789–1796 | Cite as

Crystallizing glass seals in the system BaO/ZnO/SiO2 with high coefficients of thermal expansion

  • Marita Kerstan
  • Christian Thieme
  • Amr Kobeisy
  • Christian Rüssel
Original Paper

Abstract

Glasses in the system BaO/ZnO/SiO2 with different BaO/ZnO ratios were melted and powdered and subsequently sieved to different grain size fractions. The powders were sintered to compact samples, then crystallized at temperatures in the range from 850 to 1000 °C and afterwards studied with respect to their phase composition and their thermal expansion behavior. In the glass with large BaO/ZnO ratio, the predominant phase was BaSi2O5. Besides, BaZn2Si2O7 occurred, which became the predominant phase in samples with small BaO/ZnO ratio. Dilatometric measurements showed a steep increase in length up to temperatures in the range from 325 to 375 °C. Then a kink was observed and at temperatures above, the coefficient of thermal expansion was somewhat smaller. The mean thermal expansion coefficients of many crystallized glasses were in the range from 12 to 14 × 10−6 K−1.

Keywords

Thermal Expansion Size Fraction Cristobalite Glass Composition Glass Ceramic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Mahapatra MK, Lu K (2010) Glass-based seals for solid oxide fuel and electrolyzer cells—a review. Mater Sci Eng 67:65–85CrossRefGoogle Scholar
  2. 2.
    Donald IW (1993) Preparation, properties and chemistry of glass- and glass-ceramic-to-metal seals and coatings. J Mater Sci 28:2841–2886CrossRefGoogle Scholar
  3. 3.
    Hunger A, Carl G, Gebhardt A, Rüssel C (2008) Ultra-high thermal expansion glass–ceramics in the system MgO/Al2O3/TiO2/ZrO2/SiO2 by volume crystallization of cristobalite. J Non-Cryst Solids 354:5402–5407CrossRefGoogle Scholar
  4. 4.
    Hunger A, Carl G, Gebhardt A, Rüssel C (2010) Young’s moduli and microhardness of glass-ceramics in the system MgO/Al2O3/TiO2/ZrO2/SiO2 containing quartz nanocrystals. Mater Chem Phys 122:502–506CrossRefGoogle Scholar
  5. 5.
    Ghosh S, Das Sharma A, Kundu P, Basu RN (2008) Glass-ceramic sealants for planar IT-SOFC: a bilayered approach for joining electrolyte and metallic interconnect. J Electrochem Soc 155:B473–B478CrossRefGoogle Scholar
  6. 6.
    Apfel H, Rzepka M, Tu H, Stimming U (2006) Thermal start-up behaviour and thermal management of SOFC’s. J Power Sources 154:370–378CrossRefGoogle Scholar
  7. 7.
    Sun C, Hui R, Roller J (2010) Cathode materials for solid oxide fuel cells: a review. J Solid State Electrochem 14:1125–1144CrossRefGoogle Scholar
  8. 8.
    Skarmoutsos D, Tsoga A, Naoumidis A, Nikolopoulos P (2000) 5 mol% TiO2-doped Ni–YSZ anode cermets for solid oxide fuel cells. Solid State Ionics 135:439–444CrossRefGoogle Scholar
  9. 9.
    Yang Z, Weil KS, Paxton DM, Stevenson JW (2003) Selection and Evaluation of Heat-Resistant Alloys for SOFC Interconnect Applications. J Electrochem Soc 150:A1188–A1201CrossRefGoogle Scholar
  10. 10.
    Wang S-F, Lu C-M, Wu Y-C et al (2011) La2O3–Al2O3–B2O3–SiO2 glasses for solid oxide fuel cell applications. Int J Hydrogen Energy 36:3666–3672CrossRefGoogle Scholar
  11. 11.
    Sakuragi S, Funahashi Y, Suzuki T et al (2008) Non-alkaline glass–MgO composites for SOFC sealant. J Power Sources 185:1311–1314CrossRefGoogle Scholar
  12. 12.
    Lara C, Pascual MJ, Durán A (2004) Glass-forming ability, sinterability and thermal properties in the systems RO–BaO–SiO2 (R = Mg, Zn). J Non-Cryst Solids 348:149–155CrossRefGoogle Scholar
  13. 13.
    Brochu M, Gauntt BD, Shah R et al (2006) Comparison between barium and strontium-glass composites for sealing SOFCs. J Eur Ceram Soc 26:3307–3313CrossRefGoogle Scholar
  14. 14.
    Kerstan M, Rüssel C (2011) Barium silicates as high thermal expansion seals for solid oxide fuel cells studied by high-temperature X-ray diffraction (HT-XRD). J Power Sources 196:7578–7584CrossRefGoogle Scholar
  15. 15.
    Kerstan M, Müller M, Rüssel C (2014) High temperature thermal expansion of BaAl2Si2O8, CaAl2Si2O8, and Ca2Al2SiO7 studied by high-temperature X-ray diffraction (HT-XRD). Solid State Sci 38:119–123CrossRefGoogle Scholar
  16. 16.
    Thieme C, Rüssel C (2016) Interfacial reactions between a crystallizing sealing glass from the system BaO–ZnO–NiO–SiO2 and Crofer 22 APU. J Mater Sci 51:756–765CrossRefGoogle Scholar
  17. 17.
    Thieme C, Rüssel C (2014) Cobalt containing crystallizing glass seals for solid oxide fuel cells – A new strategy for strong adherence to metals and high thermal expansion. J Power Sources 258:182–188CrossRefGoogle Scholar
  18. 18.
    Segnit ER, Holland AE (1970) The ternary system BaO-ZnO-SiO2. Aust J Chem 23:1077–1085CrossRefGoogle Scholar
  19. 19.
    Thieme C, Rüssel C (2015) High thermal expansion of crystallized glasses in the system BaO–ZnO–NiO–SiO2. Ceram Int 41:13310–13319CrossRefGoogle Scholar
  20. 20.
    Oehlschlegel G, Kockel A, Biedl A (1974) Anisotrope Wärmedehnung und Mischkristallbildung einiger Verbindungen des ternären Systems BaO–Al2O3–SiO2, Teil I. Messungen an Strukturen mit zweidimensionaler Verknüpfung von (Si, Al)O4-Tetraedern und Angaben über experimentelle Grenzen. Glastech Ber 47:24–30Google Scholar
  21. 21.
    Kerstan M, Müller M, Rüssel C (2012) Thermal expansion of Ba2ZnSi2O7, BaZnSiO4 and the solid solution series BaZn2−xMgxSi2O7 (0 ≤ x≤2) studied by high-temperature X-ray diffraction and dilatometry. J Solid State Chem 188:84–91CrossRefGoogle Scholar
  22. 22.
    Roth RS, Levin EM (1959) Phase Equilibria in the Subsystem Barium Disilicate-Dibarium Trisilicate. J Res Natl Stand 62:193–200CrossRefGoogle Scholar
  23. 23.
    Hatch DM, Ghose S (1991) The α-β phase transition in cristobalite, SiO2: symmetry analysis, domain structure, and the dynamical nature of the β-phase. Phys Chem Miner 17:554–562CrossRefGoogle Scholar
  24. 24.
    Douglass RM (1958) The crystal structure of sanbornite, BaSi2O5. Am Mineral 43:517–536Google Scholar
  25. 25.
    Peacor DB (1973) High-temperature single-crystal study of the cristobalite inversion. Z Kristallogr 138:274–298CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Marita Kerstan
    • 1
  • Christian Thieme
    • 1
  • Amr Kobeisy
    • 1
  • Christian Rüssel
    • 1
  1. 1.Otto-Schott-InstitutUniversität JenaJenaGermany

Personalised recommendations