Advertisement

Journal of Materials Science

, Volume 52, Issue 2, pp 1156–1164 | Cite as

The structure refinement and fluorescent quenching mechanism of Sr3−xB2SiO8:xEu3+ phosphor

  • Yulong Chen
  • Quansheng Liu
  • Xiaoyu Du
  • Biao Zhang
  • Wenjie Yan
  • Yuqi Wang
  • Chao Lu
  • Anfeng Shen
  • Haihan Zhang
  • Boyao Sun
Original Paper

Abstract

Sr3B2SiO8:Eu3+ red phosphors were synthesized via conventional solid-state reaction method at low temperature. The crystal structure, luminescence properties, and concentration quenching mechanism were investigated via X-ray diffraction, structure refinement, and spectra analysis. The crystal structure of phosphors is an orthorhombic system, and the refinement cell parameters are a = 12.248 Å, b = 3.309 Å, and c = 5.384 Å. Under UV light excitation, the phosphors show narrow band emission centered near 611 nm. The other two emission peaks are located at 578 and 590 nm, respectively. Eu3+ ion-doped Sr3B2SiO8 samples show strong line emissions coming from the f-f transition mechanism, the critical distance for host emission to Eu3+ calculated by content quenching method is 6.56 Å, and the interaction (Q) from emission-centered ions calculated via Dexter mechanism is 5.85. Last but not least, bright red coordinations of (0.5208, 0.2584) indicate that the phosphor has potential application as the red component in white LEDs.

Keywords

Concentration Quenching Narrow Band Emission Critical Transfer Distance Luminous Emission Isotropic Atom Displacement Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the projects of Jilin Development and Reform Commission (No. 2011FGW03) and of Changchun Science and Technology Bureau (No. 2013045).

Supplementary material

10853_2016_411_MOESM1_ESM.docx (100 kb)
The emitting spectra of sample excited under 380 and 523 nm were shown in Figs. 1s and 2s (DOCX 99 kb)

References

  1. 1.
    Ratnam BV, Jayasimhadri M, Jang K et al (2010) White light emission from NaCaPO4: Dy3+ phosphor for ultraviolet-based white light-emitting diodes. J Am Ceram Soc 93(11):3857–3861CrossRefGoogle Scholar
  2. 2.
    Sun J, Ding D, Sun J (2016) Synthesis and photoluminescence properties of a novel reddish orange-emitting Sm3+-doped strontium borosilicate phosphor. Opt Mater 58:188–195CrossRefGoogle Scholar
  3. 3.
    Huang CH, Chen TM (2011) Novel yellow-emitting Sr8MgLn(PO4)7:Eu2+ (Ln = Y, La) phosphors for applications in white LEDs with excellent color rendering index. Inorg Chem 50(12):5725–5730CrossRefGoogle Scholar
  4. 4.
    Sun J, Zhang X, Xia Z et al (2012) Luminescent properties of LiBaPO4: RE (RE = Eu2+, Tb3+, Sm3+) phosphors for white light-emitting diodes. J Appl Phys 111(1):013101CrossRefGoogle Scholar
  5. 5.
    Schubert EF, Kim JK (2005) Solid-state light sources getting smart. Science 308(5726):1274–1278CrossRefGoogle Scholar
  6. 6.
    Zhao JX, Ye XY (2002) Solubilization kinetics of benzene in pluronic F127 and P123 aqueous micellar solutions. Acta Phys Chim Sin 18(4):377–380Google Scholar
  7. 7.
    Ohno Y (2004) Color rendering and luminous efficacy of white LED spectra. Optical Science and Technology, the SPIE 49th Annual Meeting. International Society for Optics and Photonics, pp 88–98Google Scholar
  8. 8.
    Chiu HJ, Lo YK, Chen JT et al (2010) A high-efficiency dimmable LED driver for low-power lighting applications. IEEE Trans Ind Electron 57(2):735–743CrossRefGoogle Scholar
  9. 9.
    Lin CC, Liu RS (2011) Advances in phosphors for light-emitting diodes. J Phys Chem Lett 2(11):1268–1277CrossRefGoogle Scholar
  10. 10.
    Ye S, Xiao F, Pan YX et al (2010) Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties. Mater Sci Eng R Rep 71(1):1–34CrossRefGoogle Scholar
  11. 11.
    Liu QS, Cui T, Zhang XY et al (2013) Luminescent properties of Sr3B2O6: Eu2+ yellow-emitting phosphor for white light-emitting diodes. Funct Mater Lett 6(01):1350009CrossRefGoogle Scholar
  12. 12.
    Leow TQ, Hussin R, Ibrahim Z et al (2015) Eu and Dy co-activated SrB2Si2O8 blue emitting phosphor: synthesis and luminescence characteristics. Sains Malaysiana 44(5):753–760CrossRefGoogle Scholar
  13. 13.
    Chen Z, Yan Y, Liu J et al (2009) Microwave induced solution combustion synthesis of nano-sized phosphors. J Alloy Compd 473(1):L13–L16CrossRefGoogle Scholar
  14. 14.
    Xia Z, Liu RS, Huang KW et al (2012) Ca2Al3O6F:Eu2+: a green-emitting oxyfluoride phosphor for white light-emitting diodes. J Mater Chem 22(30):15183–15189CrossRefGoogle Scholar
  15. 15.
    Li X, Yang Z, Guan L et al (2008) Fabrication and luminescence properties of red emitting phosphor Y2O2S:Sm3+ for white LED by combustion method. J Alloy Compd 464(1):565–568CrossRefGoogle Scholar
  16. 16.
    Que M, Ci Z, Wang Y et al (2013) Crystal structure and luminescence properties of a cyan emitting Ca10(SiO4)3(SO4)3F2:Eu2+ phosphor. Cryst Eng Comm 15(32):6389–6394CrossRefGoogle Scholar
  17. 17.
    Sun J, Zhang W, Shen D et al (2012) Intense red light emission of Eu3+-doped Sr3B2SiO8 for white light emitting diodes. J Electrochem Soc 159(4):J107–J114CrossRefGoogle Scholar
  18. 18.
    Shang M, Li C, Lin J (2014) How to produce white light in a single-phase host. Chem Soc Rev 43(5):1372–1386CrossRefGoogle Scholar
  19. 19.
    Wen D, Shi J, Wu M et al (2014) Studies of terbium bridge: saturation phenomenon, significance of sensitizer and mechanisms of energy transfer, and luminescence quenching. ACS Appl Mater Interfaces 6(13):10792–10801CrossRefGoogle Scholar
  20. 20.
    Belsky AN, Krupa JC (1999) Luminescence excitation mechanisms of rare earth doped phosphors in the VUV range. Displays 19(4):185–196CrossRefGoogle Scholar
  21. 21.
    Hunt JR, Doonan CJ, LeVangie JD et al (2008) Reticular synthesis of covalent organic borosilicate frameworks. J Am Chem Soc 130(36):11872–11873CrossRefGoogle Scholar
  22. 22.
    Mai HX, Zhang YW, Si R et al (2006) High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J Am Chem Soc 128(19):6426–6436CrossRefGoogle Scholar
  23. 23.
    Tu D, Liu Y, Zhu H et al (2013) Breakdown of crystallographic site symmetry in lanthanide-doped NaYF4 crystals. Angew Chem Int Ed 52(4):1128–1133CrossRefGoogle Scholar
  24. 24.
    Wang P, Wang Y, Tong L (2013) Functionalized polymer nanofibers: a versatile platform for manipulating light at the nanoscale. Light Sci Appl 2(10):e102CrossRefGoogle Scholar
  25. 25.
    Shin SH, Jeon DY, Suh KS (2001) Charge-transfer nature in luminescence of YNbO4: bi blue phosphor. J Appl Phys 90(12):5986–5990CrossRefGoogle Scholar
  26. 26.
    Pimputkar S, Speck JS, DeBaars SP et al (2009) Prospects for LED lighting. Nat Photonics 3(4):180–182CrossRefGoogle Scholar
  27. 27.
    Blasse G, Grabmaier BC (2012) Luminescent materials. Springer, BerlinGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringChangchun University of Science and TechnologyChangchunChina

Personalised recommendations