Advertisement

Journal of Materials Science

, Volume 52, Issue 2, pp 1137–1148 | Cite as

The effects of eutectic silicon on grain refinement in an Al–Si alloy processed by accumulative continuous extrusion forming

  • Yuxiang Wang
  • Renguo Guan
  • Diwen Hou
  • Yang Zhang
  • Wensen Jiang
  • Huinan Liu
Original Paper

Abstract

Grains of Al–1Si(wt%) alloy were refined by accumulative continuous extrusion forming (ACEF). Electron backscatter diffraction and transmission electron microscopy were used to analyze the microstructure evolution of the Al–1Si(wt%) alloy. The grain size of the alloy decreased from 54.36 to 2.59 μm after four passes of ACEF. The grain refinement was attributed to continuous dynamic recrystallization (CDRX). The enhanced effect of nanosized precipitates on CDRX was pronounced. Nanosized eutectic Si precipitates retained a high density of dislocations in the alloy by promoting their generation and pile-up, resulting in an increase in the driving force for CDRX and a consequent promotion of grain refinement. After 4 ACEF passes, the tensile yield strength of the alloy at room temperature increased from 102 MPa to 117 MPa. Further, the elongation of the alloy at room temperature decreased from 38 to 17 % after 3 ACEF passes and subsequently increased to 23 % after 4 ACEF passes.

Keywords

Severe Plastic Deformation Misorientation Angle Eutectic Silicon Tensile Yield Strength Dislocation Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are grateful for the financial support provided by the National Natural Science Foundation of China under Grant Nos. 51474063 and 51674077 and by the Fundamental Research Funds for the Central Universities under Grant No. N150204016.

Compliance with ethical standards

Conflicts of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

References

  1. 1.
    Hatch JE, Association A (1984) Aluminum: properties and physical metallurgy. ASM International, Materials ParkGoogle Scholar
  2. 2.
    Dursun T, Soutis C (2014) Recent developments in advanced aircraft aluminium alloys. Mater Des 56:862–871. doi: 10.1016/j.matdes.2013.12.002 CrossRefGoogle Scholar
  3. 3.
    Sauvage X, Bobruk EV, Murashkin MY, Nasedkina Y, Enikeev NA, Valiev RZ (2015) Optimization of electrical conductivity and strength combination by structure design at the nanoscale in Al–Mg–Si alloys. Acta Mater 98:355–366. doi: 10.1016/j.actamat.2015.07.039 CrossRefGoogle Scholar
  4. 4.
    Estrin Y, Vinogradov A (2013) Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater 61:782–817. doi: 10.1016/j.actamat.2012.10.038 CrossRefGoogle Scholar
  5. 5.
    Zhao Y, Liao X, Jin Z, Valiev R, Zhu Y (2004) Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing. Acta Mater 52:4589–4599. doi: 10.1016/j.actamat.2004.06.017 CrossRefGoogle Scholar
  6. 6.
    Zhao S, Meng C, Mao F, Hu W, Gottstein G (2014) Influence of severe plastic deformation on dynamic strain aging of ultrafine grained Al–Mg alloys. Acta Mater 76:54–67. doi: 10.1016/j.actamat.2014.05.004 CrossRefGoogle Scholar
  7. 7.
    Langdon TG (2013) Twenty-five years of ultrafine-grained materials: achieving exceptional properties through grain refinement. Acta Mater 61:7035–7059. doi: 10.1016/j.actamat.2013.08.018 CrossRefGoogle Scholar
  8. 8.
    Figueiredo RB, Langdon TG (2012) Fabricating ultrafine-grained materials through the application of severe plastic deformation: a review of developments in Brazil. J Mater Res Technol 1:55–62. doi: 10.1016/S2238-7854(12)70010-8 CrossRefGoogle Scholar
  9. 9.
    El-Danaf E, Kawasaki M, El-Rayes M, Baig M, Mohammed JA, Langdon TG (2014) Mechanical properties and microstructure evolution in an aluminum 6082 alloy processed by high-pressure torsion. J Mater Sci 49:6597–6607. doi: 10.1007/s10853-014-8266-4 CrossRefGoogle Scholar
  10. 10.
    Stolyarov VV, Lapovok R, Brodova IG, Thomson PF (2003) Ultrafine-grained Al–5 wt% Fe alloy processed by ECAP with backpressure. Mater Sci Eng A 357:159–167. doi: 10.1016/S0921-5093(03)00215-6 CrossRefGoogle Scholar
  11. 11.
    Dumitru FD, Higuera-Cobos OF, Cabrera JM (2014) ZK60 alloy processed by ECAP: microstructural, physical and mechanical characterization. Mater Sci Eng A 594:32–39. doi: 10.1016/j.msea.2013.11.050 CrossRefGoogle Scholar
  12. 12.
    Fang D, Tian Y, Duan Q et al (2011) Effects of equal channel angular pressing on the strength and toughness of Al–Cu alloys. J mater sci 46:5002–5008. doi: 10.1007/s10853-011-5419-6 CrossRefGoogle Scholar
  13. 13.
    Xu C, Schroeder S, Berbon PB, Langdon TG (2010) Principles of ECAP–Conform as a continuous process for achieving grain refinement: application to an aluminum alloy. Acta Mater 58:1379–1386. doi: 10.1016/j.actamat.2009.10.044 CrossRefGoogle Scholar
  14. 14.
    Raab GJ, Valiev RZ, Lowe TC, Zhu YT (2004) Continuous processing of ultrafine grained Al by ECAP–Conform. Mater Sci Eng 382:30–34. doi: 10.1016/j.msea.2004.04.021 CrossRefGoogle Scholar
  15. 15.
    Gunderov DV, Polyakov AV, Semenova IP et al (2013) Evolution of microstructure, macrotexture and mechanical properties of commercially pure Ti during ECAP-conform processing and drawing. Mater Sci Eng A 562:128–136. doi: 10.1016/j.msea.2012.11.007 CrossRefGoogle Scholar
  16. 16.
    Shen YF, Guan RG, Zhao ZY, Misra RDK (2015) Ultrafine-grained Al–0.2Sc–0.1Zr alloy: the mechanistic contribution of nano-sized precipitates on grain refinement during the novel process of accumulative continuous extrusion. Acta Mater 100:247–255. doi: 10.1016/j.actamat.2015.08.043 CrossRefGoogle Scholar
  17. 17.
    Apps PJ, Bowen JR, Prangnell PB (2003) The effect of coarse second-phase particles on the rate of grain refinement during severe deformation processing. Acta Mater 51:2811–2822. doi: 10.1016/S1359-6454(03)00086-7 CrossRefGoogle Scholar
  18. 18.
    Barlow C, Hansen N, Liu Y (2002) Fine scale structures from deformation of aluminium containing small alumina particles. Acta Mater 50:171–182. doi: 10.1016/S1359-6454(01)00330-5 CrossRefGoogle Scholar
  19. 19.
    Gazizov M, Malopheyev S, Kaibyshev R (2015) The effect of second-phase particles on grain refinement during equal-channel angular pressing in an Al–Cu–Mg–Ag alloy. J Mater Sci 50:990–1005. doi: 10.1007/s10853-014-8659-4 CrossRefGoogle Scholar
  20. 20.
    Ning JL, Jiang DM (2007) Influence of Zr addition on the microstructure evolution and thermal stability of Al–Mg–Mn alloy processed by ECAP at elevated temperature. Mater Sci Eng A 452:552–557. doi: 10.1016/j.msea.2006.11.025 CrossRefGoogle Scholar
  21. 21.
    Chen YJ, Chai YC, Roven HJ, Gireesh SS, Yu YD, Hjelen J (2012) Microstructure and mechanical properties of Al–xMg alloys processed by room temperature ECAP. Mater Sci Eng A 545:139–147. doi: 10.1016/j.msea.2012.03.012 CrossRefGoogle Scholar
  22. 22.
    Guan RG, Wang SC, Wen JL, Liu XH (2006) Continuous semisolid extending extrusion process for producing AA2017 aluminium alloy flat bar. Mater Sci Technol 22:706–712. doi: 10.1179/174328406x86164 CrossRefGoogle Scholar
  23. 23.
    ASTME112 (2010) Standard test methods for determining average grain sizeGoogle Scholar
  24. 24.
    Hirsch PB (1965) Electron microscopy of thin crystals. Butterworths, LondonGoogle Scholar
  25. 25.
    Murray J, McAlister A (1984) The Al-Si (aluminum-silicon) system. Bull Alloy Ph Diagr 5:74–84. doi: 10.1007/BF02868729 CrossRefGoogle Scholar
  26. 26.
    Sakai T, Belyakov A, Kaibyshev R, Miura H, Jonas JJ (2014) Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog Mater Sci 60:130–207. doi: 10.1016/j.pmatsci.2013.09.002 CrossRefGoogle Scholar
  27. 27.
    Rollett A, Humphreys F, Rohrer GS, Hatherly M (2004) Recrystallization and related annealing phenomena, 2nd edn. Elsevier, OxfordGoogle Scholar
  28. 28.
    Parvin H, Kazeminezhad M (2014) Development a dislocation density based model considering the effect of stacking fault energy: severe plastic deformation. Comput Mater Sci 95:250–255. doi: 10.1016/j.commatsci.2014.07.027 CrossRefGoogle Scholar
  29. 29.
    Hansen N (2004) Hall-Petch relation and boundary strengthening. Scr Mater 51:801–806. doi: 10.1016/j.scriptamat.2004.06.002 CrossRefGoogle Scholar
  30. 30.
    Gil Sevillano J, van Houtte P, Aernoudt E (1980) Large strain work hardening and textures. Prog Mater Sci 25:69–134. doi: 10.1016/0079-6425(80)90001-8 CrossRefGoogle Scholar
  31. 31.
    Li F, Liu Z, Wu W et al (2016) Slip band formation in plastic deformation zone at crack tip in fatigue stage II of 2xxx aluminum alloys. Int J Fatigue 91:68–78. doi: 10.1016/j.ijfatigue.2016.05.014 CrossRefGoogle Scholar
  32. 32.
    Yu CY, Sun PL, Kao PW, Chang CP (2005) Mechanical properties of submicron-grained aluminum. Scr Mater 52:359–363. doi: 10.1016/j.scriptamat.2004.10.035 CrossRefGoogle Scholar
  33. 33.
    Wang J, Horita Z, Furukawa M et al (1993) An investigation of ductility and microstructural evolution in an Al—3% Mg alloy with submicron grain size. J Mater Res 8:2810–2818. doi: 10.1557/JMR.1993.2810 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringNortheastern UniversityShenyangChina
  2. 2.Key Laboratory of Electromagnetic Processing of Materials of Ministry of EducationNortheastern UniversityShenyangChina
  3. 3.Materials Science and EngineeringUniversity of CaliforniaRiversideUSA

Personalised recommendations