Advertisement

Journal of Materials Science

, Volume 52, Issue 2, pp 1123–1136 | Cite as

Fabrication and applications of two- and three-dimensional curved surfaces with robust underwater superoleophobic properties

  • Zhongxu Lian
  • Jinkai Xu
  • Zuobin Wang
  • Zhichao Wang
  • Zhankun Weng
  • Huadong Yu
Original Paper

Abstract

In this work, a method for the fabrication of two- and three-dimensional curved surfaces with robust underwater superoleophobicity is reported for the first time on light alloys (including 5083 Al and TC4 Ti alloys) through the high speed wire electrical discharge machining (HS-WEDM). The surface morphology and compositions were characterized by scanning electron microscope and energy-dispersive X-ray spectrometer. The results showed that rough structures and a layer of oxidization were created on the light alloys by HS-WEDM cutting. The two- and three-dimensional structured curved surfaces after an ethanol immersion exhibited the extreme underwater superoleophobic property with the high oil contact angle and low oil sliding angle. More importantly, the underwater superoleophobic surfaces with the three-dimensional curved features could have many new applications. In order to use the potential functions, the durability of the fabricated samples was tested and the results showed that the samples still exhibited the underwater superoleophobic property after the underwater storage and physical mechanism tests. Additionally, this method is versatile, simple, environment-friendly, and cost-effective.

Keywords

Contact Angle Electrical Discharge Machine Femtosecond Laser Irradiation Molybdenum Wire Slide Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would acknowledge the support from the National Natural Science Foundation of China (NSFC, No. 51275056 and No. 51305043).

Supplementary material

10853_2016_408_MOESM1_ESM.doc (15.7 mb)
Supplementary material 1 (DOC 16118 kb)

References

  1. 1.
    Tuteja A, Choi W, Ma M, Mabry JM, Mazzella SA, Rutledge GC, McKinley GH, Cohen RE (2007) Designing superoleophobic surfaces. Science 318:1618–1622CrossRefGoogle Scholar
  2. 2.
    Deng X, Mammen L, Butt H, Vollmer D (2012) Candle soot as a template for a transparent robust superamphiphobic coating. Science 335:67–70CrossRefGoogle Scholar
  3. 3.
    Wu XH, Fu QT, Kumara D, Ho JWC, Kanhere P, Zhou HF, Chen Z (2016) Mechanically robust superhydrophobic and superoleophobic coatings derived by sol–gel method. Mater Des 89:1302–1309Google Scholar
  4. 4.
    Liu XL, Zhou J, Xue ZX, Gao J, Meng JX, Wang ST, Jiang L (2012) Clam’s shell inspired high-energy inorganic coatings with underwater low adhesive superoleophobicity. Adv Mater 24:3401–3405CrossRefGoogle Scholar
  5. 5.
    Zhang W, Zhu Y, Liu X, Wang D, Li J, Jiang L, Jin J (2014) Salt-induced fabrication of superhydrophilic and underwater superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions. Angew Chem Int Ed Engl 53:856–860CrossRefGoogle Scholar
  6. 6.
    Kim TI, Tahk D, Lee HH (2009) Wettability-controllable super water- and moderately oil-repellent surface fabricated by wet chemical etching. Langmuir 25:6576–6579CrossRefGoogle Scholar
  7. 7.
    Sun T, Feng L, Gao X, Jiang L (2005) Bioinspired surfaces with special wettability. Acc Chem Res 38:644–652CrossRefGoogle Scholar
  8. 8.
    Zhang XD, Wu P, Shen YY, Zhang LH, Xue YH, Zhu F, Zhang DC, Liu CL (2011) Structural and optical properties of Au-implanted ZnO films. Appl Surf Sci 258:151–157CrossRefGoogle Scholar
  9. 9.
    Zhang F, Zhao L, Chen H, Xu S, Evans DG, Duan X (2008) Corrosion resistance of superhydrophobic layered double hydroxide films on aluminum. Angew Chem Int Ed Engl 47:2466–2469CrossRefGoogle Scholar
  10. 10.
    Genzer J, Efimenko K (2006) Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review. Biofouling 22:339–360CrossRefGoogle Scholar
  11. 11.
    Farhadi S, Farzaneh M, Kulinich SA (2011) Anti-icing performance of superhydrophobic surfaces. Appl Surf Sci 257:6264–6269CrossRefGoogle Scholar
  12. 12.
    Wang Y, Xue J, Wang Q, Chen Q, Ding J (2013) Verification of icephobic/anti-icing properties of a superhydrophobic surface. ACS Appl Mater Interfaces 5:3370–3381CrossRefGoogle Scholar
  13. 13.
    Yang J, Li W (2013) Preparation of superhydrophobic surfaces on Al substrates and the anti-icing behavior. J Alloy Compd 576:215–219CrossRefGoogle Scholar
  14. 14.
    Lee C, Kim CJ (2011) Underwater restoration and retention of gases on superhydrophobic surfaces for drag reduction. Phys Rev Lett 106:014502. doi: 10.1103/PhysRevLett.106.014502 CrossRefGoogle Scholar
  15. 15.
    Liu XL, Gao J, Xue ZX, Chen L, Lin L, Jiang L, Wang ST (2012) Bioinspired oil strider floating at the oil/water interface supported by huge superoleophobic force. ACS Nano 6:5614–5620CrossRefGoogle Scholar
  16. 16.
    Chen L, Liu MJ, Bai H, Chen PP, Xia F, Han D, Jiang L (2009) Antiplatelet and thermally responsive poly(N-isopropylacrylamide) surface with nanoscale topography. J Am Chem Soc 131:10467–10472CrossRefGoogle Scholar
  17. 17.
    Yong JL, Chen F, Yang Q, Zhang DS, Farooq U, Du GQ, Hou X (2014) Bioinspired underwater superoleophobic surface with ultralow oil-adhesion achieved by femtosecond laser microfabrication. J Mater Chem A 2:8790–8795CrossRefGoogle Scholar
  18. 18.
    Ding CM, Zhu Y, Liu MJ, Feng L, Wan MX, Jiang L (2012) PANI nanowire film with underwater superoleophobicity and potential-modulated tunable adhesion for no loss oil. Soft Matter 8:9064–9068CrossRefGoogle Scholar
  19. 19.
    Yong JL, Yang Q, Chen F, Bian H, Du GQ, Farooq U, Hou X (2015) Reversible underwater lossless oil droplet transportation. Adv Mater Interfaces 2:1400388. doi: 10.1002/admi.201570009 CrossRefGoogle Scholar
  20. 20.
    Xue ZX, Wang ST, Lin L, Chen L, Liu MJ, Feng L, Jiang L (2011) A novel superhydrophilic and underwater superoleophobic hydrogel coated mesh for oil/water separation. Adv Mater 23:4270–4273CrossRefGoogle Scholar
  21. 21.
    Yong JL, Chen F, Yang Q, Bian H, Du GQ, Shan C, Huo JL, Fang Y, Hou X (2016) Oil–water separation: a gift from the desert. Adv Mater Interfaces 3:1500650. doi: 10.1002/admi.201500650 CrossRefGoogle Scholar
  22. 22.
    Manna U, Lynn DM (2015) Synthetic surfaces with robust and tunable underwater superoleophobicity. Adv Funct Mater 25:1672–1681CrossRefGoogle Scholar
  23. 23.
    Xu LP, Peng JT, Liu YB, Wen YQ, Zhang XJ, Jiang L, Wang ST (2013) Nacre-inspired design of mechanical stable coating with underwater superoleophobicity. ACS Nano 7:5077–5083CrossRefGoogle Scholar
  24. 24.
    Cheng QF, Li MZ, Zheng YM, Su B, Wang ST, Jiang L (2011) Janus interface materials: superhydrophobic air/solid interface and superoleophobic water/solid interface inspired by a lotus leaf. Soft Matter 7:5948–5951CrossRefGoogle Scholar
  25. 25.
    Lin L, Liu MJ, Chen L, Chen PP, Ma J, Han D, Jiang L (2010) Bio-inspired hierarchical macromolecule-nanoclay hydrogels for robust underwater superoleophobicity. Adv Mater 22:4826–4830CrossRefGoogle Scholar
  26. 26.
    Wu D, Wu SZ, Chen QD, Zhao S, Zhang H, Jiao J, Piersol JA, Wang JN, Sun HB, Jiang L (2011) Facile creation of hierarchical PDMS microstructures with extreme underwater superoleophobicity for anti-oil application in microfluidic channels. Lab Chip 11:3873–3879CrossRefGoogle Scholar
  27. 27.
    Gao SJ, Shi Z, Zhang WB, Zhang F, Lin J (2014) Photoinduced superwetting single-walled carbon nanotube/TiO2 ultrathin network films for ultrafast separation of oil-in-water emulsions. ACS Nano 8:6344–6352CrossRefGoogle Scholar
  28. 28.
    Sawai Y, Nishimoto S, Kameshima Y, Fujii E, Miyake M (2013) Photoinduced underwater superoleophobicity of TiO2 thin films. Langmuir 29:6784–6789CrossRefGoogle Scholar
  29. 29.
    Ma W, Xu H, Takahara A (2014) Substrate-independent underwater superoleophobic surfaces inspired by fish-skin and mussel-adhesives. Adv Mater Interfaces 1:1300092. doi: 10.1002/admi.201300092 CrossRefGoogle Scholar
  30. 30.
    Xu LP, Zhao J, Su B, Liu XL, Peng JT, Liu YB, Liu HL, Wen YQ, Zhang XJ, Wang ST (2013) An ion-induced low-oil-adhesion organic/inorganic hybrid film for stable superoleophobicity in seawater. Adv Mater 25:606–611CrossRefGoogle Scholar
  31. 31.
    Cheng ZJ, Wang JW, Lai H, Du Y, Hou R, Li C, Zhang NQ, Sun KN (2015) pH-controllable on-demand oil/water separation on the switchable superhydrophobic/superhydrophilic and underwater low-adhesive superoleophobic copper mesh film. Langmuir 31:1393–1399CrossRefGoogle Scholar
  32. 32.
    Zheng X, Guo Z, Tian D, Zhang X, Li W, Jiang L (2015) Underwater self-cleaning scaly fabric membrane for oily water separation. ACS Appl Mater Interfaces 7:4336–4343CrossRefGoogle Scholar
  33. 33.
    Yang R, Moni P, Gleason KK (2015) Ultrathin zwitterionic coatings for roughness-independent underwater superoleophobicity and gravity-driven oil–water separation. Adv Mater Interfaces 2:1400489. doi: 10.1002/admi.201400489 CrossRefGoogle Scholar
  34. 34.
    Ma XL, Luo H, Ma J, Wang PW, Xu XL, Jing GY (2013) A facile approach for fabrication of underwater superoleophobic alloy. Appl Phys A 113:693–702CrossRefGoogle Scholar
  35. 35.
    Wang H, Guo ZG (2014) Design of underwater superoleophobic TiO2 coatings with additional photo-induced self-cleaning properties by one-step route bio-inspired from fish scales. Appl Phys Lett 104:183703. doi: 10.1063/1.4876116 CrossRefGoogle Scholar
  36. 36.
    Zeng JW, Guo ZG (2014) Superhydrophilic and underwater superoleophobic MFI zeolite-coated film for oil/water separation. Colloids Surf A Physicochem Eng Aspects 444:283–288CrossRefGoogle Scholar
  37. 37.
    Yong JL, Chen F, Yang Q, Du GQ, Shan C, Bian H, Farooq U, Hou X (2015) Bioinspired transparent underwater superoleophobic and anti-oil surfaces. J Mater Chem A 3:9379–9384CrossRefGoogle Scholar
  38. 38.
    Bae WG, Song KY, Rahmawan Y, Chu CN, Kim D, Chung DK, Suh KY (2012) One-step process for superhydrophobic metallic surfaces by wire electrical discharge machining. ACS Appl Mater Interfaces 4:3685–3691CrossRefGoogle Scholar
  39. 39.
    Weisensee PB, Torrealba EJ, Raleigh M, Jacobi AM, King WP (2014) Hydrophobic and oleophobic re-entrant steel microstructures fabricated using micro electrical discharge machining. J Micromech Microeng 24:095020. doi: 10.1088/0960-1317/24/9/095020 CrossRefGoogle Scholar
  40. 40.
    Yu HD, Lian ZX, Wan YL, Weng ZK, Xu JK, Yu ZJ (2015) Fabrication of durable superamphiphobic aluminum alloy surfaces with anisotropic sliding by HS-WEDM and solution immersion processes. Surf Coat Technol 275:112–119CrossRefGoogle Scholar
  41. 41.
    Kunieda M, Lauwers B, Rajurkar KP, Schumacher BM (2005) Advancing EDM through fundamental insight into the process. CIRP Ann 54:64–87CrossRefGoogle Scholar
  42. 42.
    Bleys P, Kruth JP, Lauwers B, Schacht B, Balasubramanian V, Froyen L, Van Humbeeck J (2006) Surface and sub-surface quality of steel after EDM. Adv Eng Mater 8:15–25CrossRefGoogle Scholar
  43. 43.
    Liu MJ, Wang ST, Wei ZX, Song YL, Jiang L (2009) Bioinspired design of a superoleophobic and low adhesive water/solid interface. Adv Mater 21:665–669CrossRefGoogle Scholar
  44. 44.
    Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551CrossRefGoogle Scholar
  45. 45.
    Jin MH, Li SS, Wang J, Xue ZX, Liao MY, Wang ST (2012) Underwater superoleophilicity to superoleophobicity: role of trapped air. Chem Commun 48:11745–11747CrossRefGoogle Scholar
  46. 46.
    Sharipov AS, Starik AM (2015) Theoretical study of the reactions of ethanol with aluminum and aluminum oxide. J Phys Chem A 119:3897–3904CrossRefGoogle Scholar
  47. 47.
    Aussillous P, Quéré D (2001) Liquid marbles. Nature 411:924–927CrossRefGoogle Scholar
  48. 48.
    Mertaniemi H, Forchheimer R, Ikkala O, Ras RHA (2012) Rebounding droplet–droplet collisions on superhydrophobic surfaces: from the phenomenon to droplet logic. Adv Mater 24:5738–5743CrossRefGoogle Scholar
  49. 49.
    Seo K, Kim M, Kim DH (2014) Candle-based process for creating a stable superhydrophobic surface. Carbon 68:583–596CrossRefGoogle Scholar
  50. 50.
    Gao XF, Jiang L (2004) Biophysics: water-repellent legs of water striders. Nature 432:36. doi: 10.1038/432036a CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Zhongxu Lian
    • 1
  • Jinkai Xu
    • 1
  • Zuobin Wang
    • 2
  • Zhichao Wang
    • 1
  • Zhankun Weng
    • 2
  • Huadong Yu
    • 1
  1. 1.Jilin Laboratory of Precision Micro-Manufacturing Technology and Equipment Engineering, College of Mechanical and Electric EngineeringChangchun University of Science and TechnologyChangchunChina
  2. 2.International Research Centre for Nano Handling and Manufacturing of ChinaChangchun University of Science and TechnologyChangchunChina

Personalised recommendations