Skip to main content
Log in

Fabrication and applications of two- and three-dimensional curved surfaces with robust underwater superoleophobic properties

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, a method for the fabrication of two- and three-dimensional curved surfaces with robust underwater superoleophobicity is reported for the first time on light alloys (including 5083 Al and TC4 Ti alloys) through the high speed wire electrical discharge machining (HS-WEDM). The surface morphology and compositions were characterized by scanning electron microscope and energy-dispersive X-ray spectrometer. The results showed that rough structures and a layer of oxidization were created on the light alloys by HS-WEDM cutting. The two- and three-dimensional structured curved surfaces after an ethanol immersion exhibited the extreme underwater superoleophobic property with the high oil contact angle and low oil sliding angle. More importantly, the underwater superoleophobic surfaces with the three-dimensional curved features could have many new applications. In order to use the potential functions, the durability of the fabricated samples was tested and the results showed that the samples still exhibited the underwater superoleophobic property after the underwater storage and physical mechanism tests. Additionally, this method is versatile, simple, environment-friendly, and cost-effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Tuteja A, Choi W, Ma M, Mabry JM, Mazzella SA, Rutledge GC, McKinley GH, Cohen RE (2007) Designing superoleophobic surfaces. Science 318:1618–1622

    Article  Google Scholar 

  2. Deng X, Mammen L, Butt H, Vollmer D (2012) Candle soot as a template for a transparent robust superamphiphobic coating. Science 335:67–70

    Article  Google Scholar 

  3. Wu XH, Fu QT, Kumara D, Ho JWC, Kanhere P, Zhou HF, Chen Z (2016) Mechanically robust superhydrophobic and superoleophobic coatings derived by sol–gel method. Mater Des 89:1302–1309

    Google Scholar 

  4. Liu XL, Zhou J, Xue ZX, Gao J, Meng JX, Wang ST, Jiang L (2012) Clam’s shell inspired high-energy inorganic coatings with underwater low adhesive superoleophobicity. Adv Mater 24:3401–3405

    Article  Google Scholar 

  5. Zhang W, Zhu Y, Liu X, Wang D, Li J, Jiang L, Jin J (2014) Salt-induced fabrication of superhydrophilic and underwater superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions. Angew Chem Int Ed Engl 53:856–860

    Article  Google Scholar 

  6. Kim TI, Tahk D, Lee HH (2009) Wettability-controllable super water- and moderately oil-repellent surface fabricated by wet chemical etching. Langmuir 25:6576–6579

    Article  Google Scholar 

  7. Sun T, Feng L, Gao X, Jiang L (2005) Bioinspired surfaces with special wettability. Acc Chem Res 38:644–652

    Article  Google Scholar 

  8. Zhang XD, Wu P, Shen YY, Zhang LH, Xue YH, Zhu F, Zhang DC, Liu CL (2011) Structural and optical properties of Au-implanted ZnO films. Appl Surf Sci 258:151–157

    Article  Google Scholar 

  9. Zhang F, Zhao L, Chen H, Xu S, Evans DG, Duan X (2008) Corrosion resistance of superhydrophobic layered double hydroxide films on aluminum. Angew Chem Int Ed Engl 47:2466–2469

    Article  Google Scholar 

  10. Genzer J, Efimenko K (2006) Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review. Biofouling 22:339–360

    Article  Google Scholar 

  11. Farhadi S, Farzaneh M, Kulinich SA (2011) Anti-icing performance of superhydrophobic surfaces. Appl Surf Sci 257:6264–6269

    Article  Google Scholar 

  12. Wang Y, Xue J, Wang Q, Chen Q, Ding J (2013) Verification of icephobic/anti-icing properties of a superhydrophobic surface. ACS Appl Mater Interfaces 5:3370–3381

    Article  Google Scholar 

  13. Yang J, Li W (2013) Preparation of superhydrophobic surfaces on Al substrates and the anti-icing behavior. J Alloy Compd 576:215–219

    Article  Google Scholar 

  14. Lee C, Kim CJ (2011) Underwater restoration and retention of gases on superhydrophobic surfaces for drag reduction. Phys Rev Lett 106:014502. doi:10.1103/PhysRevLett.106.014502

    Article  Google Scholar 

  15. Liu XL, Gao J, Xue ZX, Chen L, Lin L, Jiang L, Wang ST (2012) Bioinspired oil strider floating at the oil/water interface supported by huge superoleophobic force. ACS Nano 6:5614–5620

    Article  Google Scholar 

  16. Chen L, Liu MJ, Bai H, Chen PP, Xia F, Han D, Jiang L (2009) Antiplatelet and thermally responsive poly(N-isopropylacrylamide) surface with nanoscale topography. J Am Chem Soc 131:10467–10472

    Article  Google Scholar 

  17. Yong JL, Chen F, Yang Q, Zhang DS, Farooq U, Du GQ, Hou X (2014) Bioinspired underwater superoleophobic surface with ultralow oil-adhesion achieved by femtosecond laser microfabrication. J Mater Chem A 2:8790–8795

    Article  Google Scholar 

  18. Ding CM, Zhu Y, Liu MJ, Feng L, Wan MX, Jiang L (2012) PANI nanowire film with underwater superoleophobicity and potential-modulated tunable adhesion for no loss oil. Soft Matter 8:9064–9068

    Article  Google Scholar 

  19. Yong JL, Yang Q, Chen F, Bian H, Du GQ, Farooq U, Hou X (2015) Reversible underwater lossless oil droplet transportation. Adv Mater Interfaces 2:1400388. doi:10.1002/admi.201570009

    Article  Google Scholar 

  20. Xue ZX, Wang ST, Lin L, Chen L, Liu MJ, Feng L, Jiang L (2011) A novel superhydrophilic and underwater superoleophobic hydrogel coated mesh for oil/water separation. Adv Mater 23:4270–4273

    Article  Google Scholar 

  21. Yong JL, Chen F, Yang Q, Bian H, Du GQ, Shan C, Huo JL, Fang Y, Hou X (2016) Oil–water separation: a gift from the desert. Adv Mater Interfaces 3:1500650. doi:10.1002/admi.201500650

    Article  Google Scholar 

  22. Manna U, Lynn DM (2015) Synthetic surfaces with robust and tunable underwater superoleophobicity. Adv Funct Mater 25:1672–1681

    Article  Google Scholar 

  23. Xu LP, Peng JT, Liu YB, Wen YQ, Zhang XJ, Jiang L, Wang ST (2013) Nacre-inspired design of mechanical stable coating with underwater superoleophobicity. ACS Nano 7:5077–5083

    Article  Google Scholar 

  24. Cheng QF, Li MZ, Zheng YM, Su B, Wang ST, Jiang L (2011) Janus interface materials: superhydrophobic air/solid interface and superoleophobic water/solid interface inspired by a lotus leaf. Soft Matter 7:5948–5951

    Article  Google Scholar 

  25. Lin L, Liu MJ, Chen L, Chen PP, Ma J, Han D, Jiang L (2010) Bio-inspired hierarchical macromolecule-nanoclay hydrogels for robust underwater superoleophobicity. Adv Mater 22:4826–4830

    Article  Google Scholar 

  26. Wu D, Wu SZ, Chen QD, Zhao S, Zhang H, Jiao J, Piersol JA, Wang JN, Sun HB, Jiang L (2011) Facile creation of hierarchical PDMS microstructures with extreme underwater superoleophobicity for anti-oil application in microfluidic channels. Lab Chip 11:3873–3879

    Article  Google Scholar 

  27. Gao SJ, Shi Z, Zhang WB, Zhang F, Lin J (2014) Photoinduced superwetting single-walled carbon nanotube/TiO2 ultrathin network films for ultrafast separation of oil-in-water emulsions. ACS Nano 8:6344–6352

    Article  Google Scholar 

  28. Sawai Y, Nishimoto S, Kameshima Y, Fujii E, Miyake M (2013) Photoinduced underwater superoleophobicity of TiO2 thin films. Langmuir 29:6784–6789

    Article  Google Scholar 

  29. Ma W, Xu H, Takahara A (2014) Substrate-independent underwater superoleophobic surfaces inspired by fish-skin and mussel-adhesives. Adv Mater Interfaces 1:1300092. doi:10.1002/admi.201300092

    Article  Google Scholar 

  30. Xu LP, Zhao J, Su B, Liu XL, Peng JT, Liu YB, Liu HL, Wen YQ, Zhang XJ, Wang ST (2013) An ion-induced low-oil-adhesion organic/inorganic hybrid film for stable superoleophobicity in seawater. Adv Mater 25:606–611

    Article  Google Scholar 

  31. Cheng ZJ, Wang JW, Lai H, Du Y, Hou R, Li C, Zhang NQ, Sun KN (2015) pH-controllable on-demand oil/water separation on the switchable superhydrophobic/superhydrophilic and underwater low-adhesive superoleophobic copper mesh film. Langmuir 31:1393–1399

    Article  Google Scholar 

  32. Zheng X, Guo Z, Tian D, Zhang X, Li W, Jiang L (2015) Underwater self-cleaning scaly fabric membrane for oily water separation. ACS Appl Mater Interfaces 7:4336–4343

    Article  Google Scholar 

  33. Yang R, Moni P, Gleason KK (2015) Ultrathin zwitterionic coatings for roughness-independent underwater superoleophobicity and gravity-driven oil–water separation. Adv Mater Interfaces 2:1400489. doi:10.1002/admi.201400489

    Article  Google Scholar 

  34. Ma XL, Luo H, Ma J, Wang PW, Xu XL, Jing GY (2013) A facile approach for fabrication of underwater superoleophobic alloy. Appl Phys A 113:693–702

    Article  Google Scholar 

  35. Wang H, Guo ZG (2014) Design of underwater superoleophobic TiO2 coatings with additional photo-induced self-cleaning properties by one-step route bio-inspired from fish scales. Appl Phys Lett 104:183703. doi:10.1063/1.4876116

    Article  Google Scholar 

  36. Zeng JW, Guo ZG (2014) Superhydrophilic and underwater superoleophobic MFI zeolite-coated film for oil/water separation. Colloids Surf A Physicochem Eng Aspects 444:283–288

    Article  Google Scholar 

  37. Yong JL, Chen F, Yang Q, Du GQ, Shan C, Bian H, Farooq U, Hou X (2015) Bioinspired transparent underwater superoleophobic and anti-oil surfaces. J Mater Chem A 3:9379–9384

    Article  Google Scholar 

  38. Bae WG, Song KY, Rahmawan Y, Chu CN, Kim D, Chung DK, Suh KY (2012) One-step process for superhydrophobic metallic surfaces by wire electrical discharge machining. ACS Appl Mater Interfaces 4:3685–3691

    Article  Google Scholar 

  39. Weisensee PB, Torrealba EJ, Raleigh M, Jacobi AM, King WP (2014) Hydrophobic and oleophobic re-entrant steel microstructures fabricated using micro electrical discharge machining. J Micromech Microeng 24:095020. doi:10.1088/0960-1317/24/9/095020

    Article  Google Scholar 

  40. Yu HD, Lian ZX, Wan YL, Weng ZK, Xu JK, Yu ZJ (2015) Fabrication of durable superamphiphobic aluminum alloy surfaces with anisotropic sliding by HS-WEDM and solution immersion processes. Surf Coat Technol 275:112–119

    Article  Google Scholar 

  41. Kunieda M, Lauwers B, Rajurkar KP, Schumacher BM (2005) Advancing EDM through fundamental insight into the process. CIRP Ann 54:64–87

    Article  Google Scholar 

  42. Bleys P, Kruth JP, Lauwers B, Schacht B, Balasubramanian V, Froyen L, Van Humbeeck J (2006) Surface and sub-surface quality of steel after EDM. Adv Eng Mater 8:15–25

    Article  Google Scholar 

  43. Liu MJ, Wang ST, Wei ZX, Song YL, Jiang L (2009) Bioinspired design of a superoleophobic and low adhesive water/solid interface. Adv Mater 21:665–669

    Article  Google Scholar 

  44. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Article  Google Scholar 

  45. Jin MH, Li SS, Wang J, Xue ZX, Liao MY, Wang ST (2012) Underwater superoleophilicity to superoleophobicity: role of trapped air. Chem Commun 48:11745–11747

    Article  Google Scholar 

  46. Sharipov AS, Starik AM (2015) Theoretical study of the reactions of ethanol with aluminum and aluminum oxide. J Phys Chem A 119:3897–3904

    Article  Google Scholar 

  47. Aussillous P, Quéré D (2001) Liquid marbles. Nature 411:924–927

    Article  Google Scholar 

  48. Mertaniemi H, Forchheimer R, Ikkala O, Ras RHA (2012) Rebounding droplet–droplet collisions on superhydrophobic surfaces: from the phenomenon to droplet logic. Adv Mater 24:5738–5743

    Article  Google Scholar 

  49. Seo K, Kim M, Kim DH (2014) Candle-based process for creating a stable superhydrophobic surface. Carbon 68:583–596

    Article  Google Scholar 

  50. Gao XF, Jiang L (2004) Biophysics: water-repellent legs of water striders. Nature 432:36. doi:10.1038/432036a

    Article  Google Scholar 

Download references

Acknowledgments

The authors would acknowledge the support from the National Natural Science Foundation of China (NSFC, No. 51275056 and No. 51305043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huadong Yu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 16118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, Z., Xu, J., Wang, Z. et al. Fabrication and applications of two- and three-dimensional curved surfaces with robust underwater superoleophobic properties. J Mater Sci 52, 1123–1136 (2017). https://doi.org/10.1007/s10853-016-0408-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0408-4

Keywords

Navigation