Skip to main content
Log in

Role of grain boundary character on oxygen and hydrogen segregation-induced embrittlement in polycrystalline Ni

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) calculations are carried out to investigate the role of grain boundaries on the energetics related to the oxygen and hydrogen segregation-induced embrittlement in polycrystalline Ni systems. Four model grain boundary (GB) systems for nickel are chosen to investigate this effect. These model GBs are the Σ5 (012) GB, the Σ5 (013) GB, the Σ11 (113) GB, and the Σ3 (111) coherent twin boundary (CTB). The chosen GBs enable the investigation of the role of the CTB in the embrittlement and decohesion mechanisms in comparison with the other GBs. The embrittling mechanism considered here is based on the investigation of the energetics related to (a) the segregation of atoms of embrittling species (oxygen, hydrogen) at the GB; (b) the formation of vacancies due to the segregation of embrittling species at the GB; and (c) the energetics related to decohesion at the GB as a function of concentration/accumulation of the embrittling species at the GB. DFT calculations suggest that the segregation of the embrittling species and the embrittling effect are closely related to the local atomic structure of the GB and the associated excess free volume. In particular, it is found that the Σ3 (111) CTB is less prone to segregation of oxygen and hydrogen based on the binding energetics of the embrittling species. However, among all the GBs considered, the Σ3 (111) CTB is found to be most susceptible to GB decohesion and crack formation in the presence of small amounts of segregated oxygen atoms. This dual behavior of the Σ3 (111) CTB is also confirmed for the case of hydrogen as the embrittling species using DFT simulations. Thus, the segregation-resistant Σ3 (111) CTB is observed to be the most susceptible to crack formation in the presence of small amounts of segregated embrittling atoms. The energetics of segregation of the embrittling species and the effect of segregation on the vacancy formation energies and GB decohesion are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Pang XJ, Dwyer DJ, Gao M, Valerio P, Wei RP (1994) Surface enrichment and grain boundary segregation of niobium in Inconel 718 single and poly-crystals. Scr Metall et Mater 31:345–350

    Article  Google Scholar 

  2. Fournier L, Delafosse D, Magnin T (2001) Oxidation induced intergranular cracking and Portevin-Le Chatelier effect in nickel base superalloy 718. Mater Sci Eng A 316:166–173

    Article  Google Scholar 

  3. Carpenter W, Kang BS-J, Chang MK (1997) SAGBO Mechanism on high temperature cracking behavior of Ni-base superalloys, Proceeding of the. Superalloys 718, 625, 706, and Various Derivatives, Pittsburgh, p 679

  4. Smith DF, Smith JS, Russell KC, Smith DF (eds) (1990) Physical metallurgy of controlled expansion invar-type alloys. TMS, Warrendale, p 253

    Google Scholar 

  5. Browning PF, Henry MF, Rajan K, Loria EA (eds) (1997) Superalloys 718, 625, 706 and various derivatives. TMS, Warrendale, p 665

    Google Scholar 

  6. Rösler J, Müller S (1998) Protection of Ni-based superalloys against stress accelerated grain boundary oxidation (SAGBO) by grain boundary oxidation by grain boundary chemistry modification. Scripta Mater 40:257–263

    Article  Google Scholar 

  7. Bricknell H, Woodford DA (1981) The embrittlement of nickel following high temperature air exposure. Metall Trans A 12:425–433

    Article  Google Scholar 

  8. Woodford DA (1981) Environmental damage of a cast nickel base superalloy. Metall Trans A 12:299–308

    Article  Google Scholar 

  9. Pfaendtner JA, McMahon CJ Jr (2001) Oxygen-induced intergranular cracking of a Ni-base alloy at elevated temperatures—an example of dynamic embrittlement. Acta Mater 49:3369–3377

    Article  Google Scholar 

  10. Rezende MC, Araújo LS, Gabriel SB, Dille J, De Almeida LH (2015) Oxidation assisted intergranular cracking under loading at dynamic strain aging temperatures in Inconel 718 superalloy. J Alloys Compd 643:S256–S259

    Article  Google Scholar 

  11. Krupp U (2005) Dynamic Embrittlement—time–dependent quasi–brittle intergranular fracture at high temperatures. Int Mater Rev 50:83–97

    Article  Google Scholar 

  12. Krupp U, Wagenhuber P, Kane WM et al (2005) Environmentally assisted brittle fracture of nickel-base superalloys at high temperatures, 11th international conference on fracture. ICF11, 01

  13. Perusin S, Monceau D, Andrieu E (2005) Investigations on the diffusion of oxygen in nickel at 1000 °C by SIMS analysis. J Electrochem Soc 152(12):E390–E397

    Article  Google Scholar 

  14. Jiang DE, Carter EA (2004) First principles assessment of ideal fracture energies of materials with mobile impurities: implications for hydrogen embrittlement of metals. Acta Mater 52:4801–4807

    Article  Google Scholar 

  15. Pundt A, Kirchheim R (2006) Hydrogen in metals: microstructural aspects. Annu Rev Mater Res 36:555–608

    Article  Google Scholar 

  16. Matsumoto R, Taketomi S, Matsumoto S, Miyazaki N (2009) Atomistic simulations of hydrogen embrittlement. Int J Hydrog Energy 34:9576–9584

    Article  Google Scholar 

  17. Oudriss A, Creus J, Bouhattate J et al (2012) Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel. Acta Mater 60:6814–6828

    Article  Google Scholar 

  18. Angelo JE, Moody NR, Baskes MI (1995) Trapping of hydrogen to lattice defects in nickel. Model Simul Mater Sci Eng 3:289–307

    Article  Google Scholar 

  19. Yamaguchi M, Shiga M, Kaburaki H (2004) First-principles study on segregation energy and embrittling potency of hydrogen in Ni Σ5 (012) tilt grain boundary. J Phys Soc Jpn 73:441–449

    Article  Google Scholar 

  20. Kart HH, Cagin T (2008) The effects of boron impurity atoms on nickel Σ5 (012) grain boundary by first principles calculations. J Achiev Mater Manuf Eng 30:177–181

    Google Scholar 

  21. Siegel DJ, Hamilton JC (2005) Computational study of carbon segregation and diffusion within a nickel grain boundary. Acta Mater 53:87–96

    Article  Google Scholar 

  22. Yamaguchi M, Shiga M, Kaburaki H (2005) Grain boundary decohesion by impurity segregation in a nickel-sulfur System. Science 21:307–397

    Google Scholar 

  23. Schusteritsch G, Kaxiras E (2012) Sulfur-induced embrittlement of nickel: a first-principles study. Model Simul Mater Sci Eng 20:065007

    Article  Google Scholar 

  24. Yamaguchi M, Shiga M, Kaburaki H (2006) Grain boundary decohesion by sulfur segregation in ferromagnetic iron and nickel—a first-principles study. Mater Trans 47:2682–2689

    Article  Google Scholar 

  25. Kart HH, Uludogan M, Cagin T (2009) DFT studies of sulfur induced stress corrosion cracking in nickel. Comput Mater Sci 44:1236–1242

    Article  Google Scholar 

  26. Chen L, Peng P, Zhuang HL, Zhou DW (2006) First-principle investigation of bismuth segregation at Σ5 (012) grain-boundaries in nickel. Trans Nonferrous Met Soc China 16:813–819

    Article  Google Scholar 

  27. Gao Q, Widom M (2014) First-principles study of bismuth films at transition-metal grain boundaries. Phys Rev B 90:144102

    Article  Google Scholar 

  28. Bentria ELT, Lefkaier IK, Bentria B (2013) The effect of vanadium impurity on Nickel Σ5 (012) grain boundary. Mater Sci Eng A 577:197–201

    Article  Google Scholar 

  29. Liu WG, Han H, Ren CL et al (2014) First-principles study of intergranular embrittlement induced by Te in the Ni Σ5 grain boundary. Comput Mater Sci 88:22–27

    Article  Google Scholar 

  30. Yamaguchi M, Shiga M, Kaburaki H (2004) Energetics of segregation and embrittling potency for non-transition elements in the Ni Σ5 (012) symmetrical tilt grain boundary: a first-principles study. J Phys 16:3933–3955

    Google Scholar 

  31. Vsianska M, Sob M (2011) The effect of segregated sp-impurities on grain boundary and surface structure, magnetism and embrittlement in nickel. Prog Mater Sci 56:817–840

    Article  Google Scholar 

  32. Razumovskiy VI, Lozovoi AY, Razumovskii IM (2015) First-principles-aided design of a new Ni-base superalloy: influence of transition metal alloying elements on grain boundary and bulk cohesion. Acta Mater 82:369–377

    Article  Google Scholar 

  33. Liu W, Han H, Ren C, Yin H, Zou Y, Huai P, Xu H (2015) Effects of rare-earth on the cohesion of Ni Σ 5(012) grain boundary from first-principles calculations. Comput Mater Sci 96:374–378

    Article  Google Scholar 

  34. Krupp U, Kane W, Pfaendtner JA et al (2004) Oxygen-induced intergranular fracture of the nickel-base alloy IN718 during mechanical loading at high temperatures. Mater Res 7:35–41

    Article  Google Scholar 

  35. Yang SL, Krupp U, Christ HJ, Trindade VB (2005) The relationship between grain boundary character and the intergranular oxide distributionin IN718 superalloy. Adv Eng Mater 7(8):723–726

    Article  Google Scholar 

  36. Palumbo G, Aust KT (1995) Solute effects in grain boundary engineering. Can Metall Quart 34:165–173

    Article  Google Scholar 

  37. Watanabe T (1994) The impact of grain boundary character distribution on fracture in polycrystals. Mat Sci Eng A 176:39–49

    Article  Google Scholar 

  38. Bechtle S, Kumar M, Somerday BP, Launey ME, Ritchie RO (2009) Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials. Acta Mater 57:4148–4157

    Article  Google Scholar 

  39. Stefano DD, Mrovec M, Elsässe C (2015) First-principles investigation of hydrogen trapping and diffusion at grain boundaries in nickel. Acta Mater 98:306–312

    Article  Google Scholar 

  40. Alvaro A, Jensen IT, Kheradmand N, Løvvik OM, Olden V (2015) Hydrogen embrittlement in nickel, visited by first principles modeling, cohesive zone simulation and nanomechanical testing. Int J Hydrog Energy 40:16892–16900

    Article  Google Scholar 

  41. Barrowsa Wesley, Dingreville Rémi, Spearot Douglas (2016) Traction–separation relationships for hydrogen induced grain boundary embrittlement in nickel via molecular dynamics simulations. Mater Sci Eng, A 650:354–364

    Article  Google Scholar 

  42. Seita M, Hanson JP, Gradecak S et al (2015) The dual role of coherent twin boundaries in hydrogen embrittlement. Nat Commun 6:6164

    Article  Google Scholar 

  43. Creuze J, Berthier F, Tétot R (2001) Wetting and structural transition induced by segregation at grain boundaries: a Monte Carlo study. Phys Rev Lett 86:5735–5738

    Article  Google Scholar 

  44. Frolov T, Olmsted DL, Asta M, Mishin Y (2013) Structural phase transformations in metallic grain boundaries. Nat Commun 4:1899

    Article  Google Scholar 

  45. Frolov T, Asta M, Mishin Y (2015) Segregation-induced phase transformations in grain boundaries. Phys Rev B 92:020103(R)

    Article  Google Scholar 

  46. Sangid MD, Sehitoglu H, Maier HJ, Niendorf T (2010) Grain boundary characterization and energetics of superalloys. Mater Sci Eng, A 527:7115–7125

    Article  Google Scholar 

  47. Duparc OH, Poulat S, Larere A, Thibault J, Priester L (2000) High-resolution transmission electron microscopy observations and atomic simulations of the structures of exact and near Σ = 11, 332 tilt grain boundaries in nickel. Philos Mag A 80(4):853–870

    Article  Google Scholar 

  48. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

    Article  Google Scholar 

  49. Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  Google Scholar 

  50. Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  Google Scholar 

  51. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  Google Scholar 

  52. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  53. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  54. Čák M, Šob M, Hafner J (2008) First-principles study of magnetism at grain boundaries in iron and nickel. Phys Rev B 78:054418

    Article  Google Scholar 

  55. Cho JH, Zhang ZY, Plummer EW (1999) Oscillatory lattice relaxation at metal surfaces. Phys Rev B 59:1677–1680

    Article  Google Scholar 

  56. Steyskal EM, Oberdorfer B, Sprengel W (2012) Direct experimental determination of grain boundary excess volume in metals. Phys Rev Lett 108:055504

    Article  Google Scholar 

  57. Olmsted DL, Foiles SM, Holm EA (2009) Survey of computed grain boundary properties in face-centered cubic metals: I. grain boundary energy. Acta Mater 57:3694–3703

    Article  Google Scholar 

  58. Mehrer H (2007) Diffusion in solids. Springer, New York

    Book  Google Scholar 

  59. Seeger A, Schottky G (1959) Energy and electrical resistivity of high-angle grain boundaries in metals. Acta Metall 7:495–505

    Article  Google Scholar 

  60. Zhang H, Srolovitz DJ (2006) Simulation and analysis of the migration mechanism of R5 tilt grain boundaries in an fcc metal. Acta Mater 54:623–633

    Article  Google Scholar 

  61. Shiga M, Yamaguchi M, Kaburaki H (2003) Structure and energetics of clean and hydrogenated Ni surfaces and symmetrical tilt grain boundaries using the embedded-atom method. Phys Rev B 68:245402

    Article  Google Scholar 

  62. Coleman SP, Spearot DE, Capolungo L (2013) Virtual diffraction analysis of Ni [0 1 0] symmetric tilt grain boundaries. Modell Simul Mater Sci Eng. 21:055020

    Article  Google Scholar 

  63. Korhonen T, Puska MJ, Nieminen RM (1995) Vacancy-formation energies for fcc and bcc transition metals. Phys Rev B 51:9526–9532

    Article  Google Scholar 

  64. Smedskjaer LC, Fluss MJ, Legnini DG, Chason MK, Siegel RW (1981) The vacancy formation enthalpy in Ni determined by positron annihilation. J Phys F 11:2221

    Article  Google Scholar 

  65. Hashibon A, Elsässer C, Mishin Y, Gumbsch P (2007) First-principles study of thermodynamical and mechanical stabilities of thin copper film on tantalum. Phys Rev B 76:245434

    Article  Google Scholar 

  66. Rose JH, Ferrante J, Smith JR (1981) Universal binding energy curves for metals and bimetallic interfaces. Phys Rev Lett 47:675–678

    Article  Google Scholar 

  67. Zhang C, Alavi A (2005) First-principles study of superabundant vacancy formation in metal hydrides. J Am Chem Soc 127:9808–9817

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation (NSF) CMMI Grant-1454547.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avinash M. Dongare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Dongare, A.M. Role of grain boundary character on oxygen and hydrogen segregation-induced embrittlement in polycrystalline Ni. J Mater Sci 52, 30–45 (2017). https://doi.org/10.1007/s10853-016-0389-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0389-3

Keywords

Navigation