Journal of Materials Science

, Volume 52, Issue 1, pp 628–642 | Cite as

Tuning the acidic–basic properties by Zn-substitution in Mg–Al hydrotalcites as optimal catalysts for the aldol condensation reaction

  • Willinton Y. Hernández
  • Funda Aliç
  • An Verberckmoes
  • Pascal Van Der Voort
Original Paper


Mg–Zn–Al hydrotalcites and derived mixed oxides with different Mg2+-to-Zn2+ ratios were prepared by co-precipitation in super-saturated conditions, followed by thermal decomposition at 500 °C. The synthesized materials were evaluated as catalysts for the self-condensation of octanal in order to establish structure-to-functionality properties of the prepared materials. The presence of zinc affects the structural and textural properties of the as-synthesized hydrotalcites and derived mixed oxides, and provokes a remarkable modification on the acidic–basic properties of the materials as studied by CO2 and NH3-TPD. The presence of Zn2+ caused an increment in the concentration of surface acidic sites compared to the binary Mg–Al system. The samples characterized by a Zn/Mg ratio ≤1 showed the optimal ratio of acidic and basic sites and the best catalytic performance for the production of the α,β-unsaturated aldehyde. The reconstruction of the layered materials (starting from the mixed oxides) caused an increment in the concentration of surface OH groups, further modifying the selectivity of the reaction.


Octanal Mixed Oxide Layered Double Hydroxide Basic Site Hydrotalcites 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially funded by the IWT-Belgium.


  1. 1.
    Climent MJ, Corma A, Iborra S, Sabater MJ (2014) Heterogeneous catalysis for tandem reactions. ACS Catal 4(3):870–891. doi: 10.1021/cs401052k CrossRefGoogle Scholar
  2. 2.
    Filice M, Palomo JM (2014) Cascade reactions catalyzed by bionanostructures. ACS Catal 4(5):1588–1598. doi: 10.1021/cs401005y CrossRefGoogle Scholar
  3. 3.
    Vaccari A (1999) Clays and catalysis: a promising future. Appl Clay Sci 14(4):161–198. doi: 10.1016/S0169-1317(98)00058-1 CrossRefGoogle Scholar
  4. 4.
    Cavani F, Trifirò F, Vaccari A (1991) Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today 11(2):173–301. doi: 10.1016/0920-5861(91)80068-K CrossRefGoogle Scholar
  5. 5.
    Fan G, Li F, Evans DG, Duan X (2014) Catalytic applications of layered double hydroxides: recent advances and perspectives. Chem Soc Rev 43(20):7040–7066. doi: 10.1039/c4cs00160e CrossRefGoogle Scholar
  6. 6.
    Debecker DP, Gaigneaux EM, Busca G (2009) Exploring, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis. Chem-Eur J 15(16):3920–3935. doi: 10.1002/chem.200900060 CrossRefGoogle Scholar
  7. 7.
    Tichit D, Coq B (2003) Catalysis by hydrotalcites and related materials. Cattech 7(6):206–217. doi: 10.1023/b:catt.0000007166.65577.34 CrossRefGoogle Scholar
  8. 8.
    Abello S, Medina F, Tichit D, Perez-Ramirez J, Cesteros Y, Salagre P, Sueiras JE (2005) Nanoplatelet-based reconstructed hydrotalcites: towards more efficient solid base catalysts in aldol condensations. Chem Commun 11:1453–1455. doi: 10.1039/b417322h CrossRefGoogle Scholar
  9. 9.
    Abello S, Medina F, Tichit D, Perez-Ramirez J, Groen JC, Sueiras JE, Salagre P, Cesteros Y (2005) Aldol condensations over reconstructed Mg-Al hydrotalcites: structure-activity relationships related to the rehydration method. Chem-Eur J 11(2):728–739. doi: 10.1002/chem.200400409 CrossRefGoogle Scholar
  10. 10.
    Álvarez MG, Chimentão RJ, Barrabés N, Föttinger K, Gispert-Guirado F, Kleymenov E, Tichit D, Medina F (2013) Structure evolution of layered double hydroxides activated by ultrasound induced reconstruction. Appl Clay Sci 83–84:1–11. doi: 10.1016/j.clay.2013.08.006 CrossRefGoogle Scholar
  11. 11.
    Chimentão RJ, Abelló S, Medina F, Llorca J, Sueiras JE, Cesteros Y, Salagre P (2007) Defect-induced strategies for the creation of highly active hydrotalcites in base-catalyzed reactions. J Catal 252(2):249–257. doi: 10.1016/j.jcat.2007.09.015 CrossRefGoogle Scholar
  12. 12.
    Capps SM, Clarke TP, Charmant JPH, Hoppe HAF, Lloyd-Jones GC, Murray M, Peakman TM, Stentiford RA, Walsh KE, Worthington PA (2000) Highly substituted homoallylvinylcyclopropanes by indium-mediated reaction of alpha, beta-unsaturated ketones and aldehydes with allylic halides. Eur J Org Chem 6:963–974CrossRefGoogle Scholar
  13. 13.
    H-f Xu, Zhong H, Wang S, F-x Li (2015) One-pot synthesis of cyclic aldol tetramer and alpha, beta-unsaturated aldol from linear aldehydes using quaternary ammonium combined with sodium hydroxide as catalysts. J Cent South Univ 22(6):2081–2087. doi: 10.1007/s11771-015-2732-2 CrossRefGoogle Scholar
  14. 14.
    Sels BF, De Vos DE, Jacobs PA (2001) Hydrotalcite-like anionic clays in catalytic organic reactions. Catal Rev-Sci Eng 43(4):443–488. doi: 10.1081/cr-120001809 CrossRefGoogle Scholar
  15. 15.
    Barrett CJ, Chheda JN, Huber GW, Dumesic JA (2006) Single-reactor process for sequential aldol-condensation and hydrogenation of biomass-derived compounds in water. Appl Catal B 66(1–2):111–118. doi: 10.1016/j.apcatb.2006.03.001 CrossRefGoogle Scholar
  16. 16.
    Hora L, Kelbichova V, Kikhtyanin O, Bortnovskiy O, Kubicka D (2014) Aldol condensation of furfural and acetone over Mg-Al layered double hydroxides and mixed oxides. Catal Today 223:138–147. doi: 10.1016/j.cattod.2013.09.022 CrossRefGoogle Scholar
  17. 17.
    Yadav GD, Aduri P (2012) Aldol condensation of benzaldehyde with heptanal to jasminaldehyde over novel Mg-Al mixed oxide on hexagonal mesoporous silica. J Mol Catal A 355:142–154. doi: 10.1016/j.molcata.2011.12.008 CrossRefGoogle Scholar
  18. 18.
    Hora L, Kikhtyanin O, Čapek L, Bortnovskiy O, Kubička D (2015) Comparative study of physico-chemical properties of laboratory and industrially prepared layered double hydroxides and their behavior in aldol condensation of furfural and acetone. Catal Today 241:221–230. doi: 10.1016/j.cattod.2014.03.010 Part B CrossRefGoogle Scholar
  19. 19.
    Tichit D, Lutic D, Coq B, Durand R, Teissier R (2003) The aldol condensation of acetaldehyde and heptanal on hydrotalcite-type catalysts. J Catal 219(1):167–175. doi: 10.1016/S0021-9517(03)00192-1 CrossRefGoogle Scholar
  20. 20.
    Corma A, Garcia H (2003) Lewis acids: from conventional homogeneous to green homogeneous and heterogeneous catalysis. Chem Rev 103(11):4307–4365. doi: 10.1021/cr030680z CrossRefGoogle Scholar
  21. 21.
    Climent MJ, Corma A, Iborra S, Epping K, Velty A (2004) Increasing the basicity and catalytic activity of hydrotalcites by different synthesis procedures. J Catal 225(2):316–326. doi: 10.1016/j.jcat.2004.04.027 CrossRefGoogle Scholar
  22. 22.
    Crespo I, Barriga C, Ulibarri MA, Gonzalez-Bandera G, Malet P, Rives V (2001) An X-ray diffraction and absorption study of the phases formed upon calcination off Zn-Al-Fe hydrotalcites. Chem Mater 13(5):1518–1527. doi: 10.1021/cm0010856 CrossRefGoogle Scholar
  23. 23.
    Kloprogge JT, Hickey L, Frost RL (2004) The effects of synthesis pH and hydrothermal treatment on the formation of zinc aluminum hydrotalcites. J Solid State Chem 177(11):4047–4057. doi: 10.1016/j.jssc.2004.07.010 CrossRefGoogle Scholar
  24. 24.
    Yang K, LG Yan, Yang YM, Yu SJ, Shan RR, Yu HQ, Zhu BC, Du B (2014) Adsorptive removal of phosphate by Mg–Al and Zn–Al layered double hydroxides: kinetics, isotherms and mechanisms. Sep Purif Technol 124:36–42. doi: 10.1016/j.seppur.2013.12.042 CrossRefGoogle Scholar
  25. 25.
    Vieira AC, Moreira RL, Dias A (2009) Raman scattering and fourier transform infrared spectroscopy of Me6Al2(OH)16Cl2·4H2O (Me=Mg, Ni, Zn Co, and Mn) and Ca2Al(OH)6Cl·4H2O Hydrotalcites. J Phys Chem C 113(30):13358–13368. doi: 10.1021/jp902566r CrossRefGoogle Scholar
  26. 26.
    Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767CrossRefGoogle Scholar
  27. 27.
    Valente JS, Tzompantzi F, Prince J, Cortez JGH, Gomez R (2009) Adsorption and photocatalytic degradation of phenol and 2,4 dichlorophenoxiacetic acid by Mg–Zn–Al layered double hydroxides. Appl Catal B 90(3–4):330–338. doi: 10.1016/j.apcatb.2009.03.019 CrossRefGoogle Scholar
  28. 28.
    Vaccari A (1998) Preparation and catalytic properties of cationic and anionic clays. Catal Today 41(1–3):53–71. doi: 10.1016/S0920-5861(98)00038-8 CrossRefGoogle Scholar
  29. 29.
    Sanchez-Cantu M, Perez-Diaz LM, Rubio-Rosas E, Abril-Sandoval VH, Merino-Aguirre JG, Reyes-Cruz FM, Orea L (2014) MgZnAl hydrotalcite-like compounds preparation by a green method: effect of zinc content. Chem Papers 68(5):638–649. doi: 10.2478/s11696-013-0491-9 CrossRefGoogle Scholar
  30. 30.
    Lee G, Jeong Y, Takagaki A, Jung JC (2014) Sonication assisted rehydration of hydrotalcite catalyst for isomerization of glucose to fructose. J Mol Catal A 393:289–295. doi: 10.1016/j.molcata.2014.06.019 CrossRefGoogle Scholar
  31. 31.
    Dębek R, Radlik M, Motak M, Galvez ME, Turek W, Da Costa P, Grzybek T (2015) Ni-containing Ce-promoted hydrotalcite derived materials as catalysts for methane reforming with carbon dioxide at low temperature—on the effect of basicity. Catal Today 257:59–65. doi: 10.1016/j.cattod.2015.03.017 Part 1 CrossRefGoogle Scholar
  32. 32.
    Pavel OD, Tichit D, Marcu I-C (2012) Acido-basic and catalytic properties of transition-metal containing Mg–Al hydrotalcites and their corresponding mixed oxides. Appl Clay Sci 61:52–58. doi: 10.1016/j.clay.2012.03.006 CrossRefGoogle Scholar
  33. 33.
    Di Cosimo JI, Díez VK, Xu M, Iglesia E, Apesteguía CR (1998) Structure and surface and catalytic properties of Mg-Al basic oxides. J Catal 178(2):499–510. doi: 10.1006/jcat.1998.2161 CrossRefGoogle Scholar
  34. 34.
    Liu P, Derchi M, Hensen EJM (2014) Promotional effect of transition metal doping on the basicity and activity of calcined hydrotalcite catalysts for glycerol carbonate synthesis. Appl Catal B 144:135–143. doi: 10.1016/j.apcatb.2013.07.010 CrossRefGoogle Scholar
  35. 35.
    Di Cosimo JI, Apesteguía CR, Ginés MJL, Iglesia E (2000) Structural requirements and reaction pathways in condensation reactions of alcohols on MgyAlOx catalysts. J Catal 190(2):261–275. doi: 10.1006/jcat.1999.2734 CrossRefGoogle Scholar
  36. 36.
    Shen J, Tu M, Hu C (1998) Structural and surface acid/base properties of hydrotalcite-derived MgAlO oxides calcined at varying temperatures. J Solid State Chem 137(2):295–301. doi: 10.1006/jssc.1997.7739 CrossRefGoogle Scholar
  37. 37.
    Bezen MCI, Breitkopf C, Lercher JA (2011) On the acid–base properties of Zn–Mg–Al mixed oxides. Appl Catal A 399(1–2):93–99. doi: 10.1016/j.apcata.2011.03.053 CrossRefGoogle Scholar
  38. 38.
    Rossi TM, Campos JC, Souza MMVM (2016) CO2 capture by Mg-Al and Zn-Al hydrotalcite-like compounds. Adsorption 22(2):151–158. doi: 10.1007/s10450-015-9732-2 CrossRefGoogle Scholar
  39. 39.
    Climent MJ, Corma A, Iborra S, Velty A (2004) Activated hydrotalcites as catalysts for the synthesis of chalcones of pharmaceutical interest. J Catal 221(2):474–482. doi: 10.1016/j.jcat.2003.09.012 CrossRefGoogle Scholar
  40. 40.
    Sharma SK, Parikh PA, Jasra RV (2007) Solvent free aldol condensation of propanal to 2-methylpentenal using solid base catalysts. J Mol Catal A 278(1–2):135–144. doi: 10.1016/j.molcata.2007.09.002 CrossRefGoogle Scholar
  41. 41.
    Díez VK, Di Cosimo JI, Apesteguía CR (2008) Study of the citral/acetone reaction on MgyAlOx oxides: effect of the chemical composition on catalyst activity, selectivity and stability. Appl Catal A 345(2):143–151. doi: 10.1016/j.apcata.2008.04.035 CrossRefGoogle Scholar
  42. 42.
    Aramendia MA, Borau V, Jimenez C, Marinas JM, Ruiz JR, Urbano F (2003) Reduction of alpha, beta-unsaturated aldehydes with basic MgO/M2O3 catalysts (M=Al, Ga, In). Appl Catal A 249(1):1–9. doi: 10.1016/s0926-860x(03)00163-7 CrossRefGoogle Scholar
  43. 43.
    Hidalgo JM, Jimenez-Sanchidrian C, Rafael Ruiz J (2014) Delaminated layered double hydroxides as catalysts for the Meerwein-Ponndorf-Verley reaction. Appl Catal A 470:311–317. doi: 10.1016/j.apcata.2013.11.007 CrossRefGoogle Scholar
  44. 44.
    Mora M, Isabel Lopez M, Jimenez-Sanchidrian C, Rafael Ruiz J (2010) Ca/Al mixed oxides as catalysts for the Meerwein-Ponndorf-Verley Reaction. Catal Lett 136(3–4):192–198. doi: 10.1007/s10562-010-0329-9 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Willinton Y. Hernández
    • 1
  • Funda Aliç
    • 1
  • An Verberckmoes
    • 2
  • Pascal Van Der Voort
    • 1
  1. 1.Department of Inorganic and Physical Chemistry, Center for Ordered Materials, Organometallics and Catalysis (COMOC)Ghent UniversityGhentBelgium
  2. 2.Department of Chemical Engineering and Technical Chemistry, Industrial Catalysis and Adsorption Technology (INCAT)Ghent UniversityGhentBelgium

Personalised recommendations