Journal of Materials Science

, Volume 52, Issue 1, pp 229–237 | Cite as

High temperature dielectric, ferroelectric and piezoelectric properties of Mn-modified BiFeO3-BaTiO3 lead-free ceramics

  • Qiang Li
  • Jianxin Wei
  • Jinrong Cheng
  • Jianguo Chen
Original Paper


Lead-free and high-temperature 0.71BiFeO3-0.29BaTiO3 ceramics with Mn modification (BF-BT-x %Mn) were fabricated by conventional solid-state reaction method, and the high temperature dielectric, ferroelectric and piezoelectric properties were investigated. All compositions exhibited pseudo-cubic phases. Mn modification improved the electrical properties of BF-BT solid solutions at both room and high temperature. The Curie temperature T C, depolarization temperature T d, dielectric constant ε r, dielectric loss tanδ, piezoelectric constant d 33, electromechanical coupling factor k p, remnant polarization P r of BF-BT-1.2 %Mn ceramics were 506, 500 °C, 556, 0.04, 169 pC N−1, 0.373, 31.4 μC cm−2, respectively. The ε r, tanδ, and k p of BF-BT-1.2 %Mn ceramics were stable with the increase of temperature until 500 °C. The coercive field E c of BF-BT-1.2 %Mn ceramics was nearly 30 kV cm−1 at 200 °C, which was much larger than those of PZT, BS-PT,BNT and KNN ceramics. The high field strain coefficient d*33 reached as large as 525 pm V−1 at 200 °C. These results showed that the BF-BT-x %Mn ceramics were promising candidate for high temperature piezoelectric applications.


Piezoelectric Property Ferroelectric Property High Curie Temperature Strain Hysteresis Planar Electromechanical Coupling Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Natural Science Foundation of China (Grant No. 51302163) and the Innovational Foundation of Shanghai University (Grant No. K.10-0110-13-009).

Compliance with ethical standards

Conflicts of interest

In this paper, no conflicts of interest exist.


  1. 1.
    Wang J, Neaton JB, Zheng H et al (2003) Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299(5613):1719–1722CrossRefGoogle Scholar
  2. 2.
    Rojac T, Kosec M, Budic B, Setter N, Damjanovic D (2010) Strong ferroelectric domain-wall pinning in BiFeO3 ceramics. J Appl Phys 108(7):074107CrossRefGoogle Scholar
  3. 3.
    Rojac T, Kosec M, Damjanovic D (2011) Large electric-field induced strain in BiFeO3 ceramics. J Am Ceram Soc 94:4108–4111CrossRefGoogle Scholar
  4. 4.
    Zhang Q, Zhu X, Xu Y et al (2013) Effect of La3+ substitution on the phase transitions, microstructure and electrical properties of Bi1−xLaxFeO3 ceramics. J Alloy Compd 546:57–62CrossRefGoogle Scholar
  5. 5.
    Chen X, Wang J, Yuan G et al (2012) Structure, ferroelectric and piezoelectric properties of multiferroic Bi0.875Sm0.125FeO3 ceramics. J Alloy Compd 541:173–176CrossRefGoogle Scholar
  6. 6.
    Rai R, Valente MA, Bdikin I et al (2013) Enhanced ferroelectric and magnetic properties of perovskite structured Bi1−xyGdxLayFe1−yTiyO3magnetoelectric ceramics. J Phys Chem Solids 74(7):905–912CrossRefGoogle Scholar
  7. 7.
    Yan J, Gomi M, Yokota T et al (2013) Phase transition and huge ferroelectric polarization observed in BiFe1−xGaxO3 thin films. Appl Phys Lett 102(22):222906CrossRefGoogle Scholar
  8. 8.
    Varshney D, Kumar A, Verma K (2011) Effect of A site and B site doping on structural, thermal, and dielectric properties of BiFeO3 ceramics. J Alloy Compd 509(33):8421–8426CrossRefGoogle Scholar
  9. 9.
    Wang QQ, Wang Z, Liu XQ et al (2012) Improved structure stability and multiferroic characteristics in CaTiO3-Modified BiFeO3 Ceramics. J Am Ceram Soc 95(2):670–675CrossRefGoogle Scholar
  10. 10.
    Ma ZZ, Tian ZM, Li JQ et al (2011) Enhanced polarization and magnetization in multiferroic (1-x)BiFeO3-xSrTiO3 solid solution. Solid State Sci 13(12):2196–2200CrossRefGoogle Scholar
  11. 11.
    Kumar MM, Srinath S, Kumar GS et al (1998) Spontaneous magnetic moment in BiFeO3-BaTiO3 solid solutions at low temperatures. J Magn Magn Mater 188:203–212CrossRefGoogle Scholar
  12. 12.
    Kumar MM, Srinivas A, Suryanarayana SV (2000) Structure property relations in BiFeO3/BaTiO3 solid solutions. J Appl Phys 87:855–861CrossRefGoogle Scholar
  13. 13.
    Ma Y, Chen XM (2009) Enhanced multiferroic characteristics in NaNbO3-modified BiFeO3 ceramics. J Appl Phys 105(5):4107CrossRefGoogle Scholar
  14. 14.
    Wang TH, Tu CS, Ding Y et al (2011) Phase transition and ferroelectric properties of xBiFeO3–(1 − x)BaTiO3 ceramics. Curr App Phys 11(3):S240–S243CrossRefGoogle Scholar
  15. 15.
    Wang TH, Ding Y, Tu CS et al (2011) Structure magnetic and dielectric properties of (1-x)BiFeO3-xBaTiO3 ceramics. J Appl Phys 109:07D907Google Scholar
  16. 16.
    Park TJ, Papaefthymiou GC, Viescas AJ et al (2010) Composition-dependent magnetic properties of BiFeO3-BaTiO3 solid solution nanostructures. Phys Rev B 82(2):024431CrossRefGoogle Scholar
  17. 17.
    Zhou Q, Zhou C, Yang H et al (2014) Piezoelectric and ferroelectric properties of Ga modified BiFeO3–BaTiO3 lead-free ceramics with high curie temperature. J Mater Sci-Mater Electron 25(1):196–201CrossRefGoogle Scholar
  18. 18.
    Cen Z, Zhou C, Yang H et al (2013) Remarkably high-temperature stability of Bi(Fe1−xAlx)O3–BaTiO3 solid solution with near-zero temperature coefficient of piezoelectric properties. J Am Ceram Soc 96(7):2252–2256CrossRefGoogle Scholar
  19. 19.
    Wefring ET, Schader FH, Webber KG et al (2016) Electrical conductivity and ferroelastic properties of Ti-substituted solid solutions (1 − x)BiFeO3xBi0.5K0.5TiO3. J Eur Ceram Soc 36(3):497–506CrossRefGoogle Scholar
  20. 20.
    Yang H, Zhou C, Liu X et al (2013) Piezoelectric properties and temperature stabilities of Mn-and Cu-modified BiFeO3–BaTiO3 high temperature ceramics. J Eur Ceram Soc 33(6):1177–1183CrossRefGoogle Scholar
  21. 21.
    Behera C, Choudhary RNP, Das PR (2014) Structural and electrical properties of La-modified BiFeO3–BaTiO3 composites. J Mater Sci-Mater Electron 25(5):2086–2095CrossRefGoogle Scholar
  22. 22.
    Zheng Q, Luo L, Lam KH et al (2014) Enhanced ferroelectricity, piezoelectricity, and ferromagnetism in Nd-modified BiFeO3-BaTiO3 lead-free ceramics. J Appl Phys 116(18):184101CrossRefGoogle Scholar
  23. 23.
    Wan Y, Li Y, Li Q et al (2014) Microstructure, ferroelectric, piezoelectric, and ferromagnetic properties of Sc-modified BiFeO3–BATIO3MULTIFERROIC ceramics with MnO2 addition. J Am Ceram Soc 97(6):1809–1818CrossRefGoogle Scholar
  24. 24.
    Leontsev SO, Eitel RE (2009) Dielectric and piezoelectric properties in Mn-modified (1 − x)BiFeO3xBaTiO3 ceramics. J Am Ceram Soc 92(12):2957–2961CrossRefGoogle Scholar
  25. 25.
    Chen J, Cheng J (2014) Enhanced thermal stability of lead-free high temperature 0.75BiFeO3–0.25 BaTiO3 ceramics with excess Bi content. J Alloy Compd 589:115–119CrossRefGoogle Scholar
  26. 26.
    Wang TH, Tu CS, Chen HY et al (2011) Magnetoelectric coupling and phase transition in BiFeO3 and (BiFeO3)0.95(BaTiO3)0.05 ceramics. J Appl Phys 109(4):044101CrossRefGoogle Scholar
  27. 27.
    Singh A, Pandey V, Kotnala RK et al (2008) Direct evidence for multiferroic magnetoelectric coupling in 0.9BiFeO3-0.1BaTiO3. Phys Rev Lett 101(24):247602CrossRefGoogle Scholar
  28. 28.
    Chandarak S, Unruan M, Sareein T et al (2009) Fabrication and characterization of (1-x)BiFeO3-xBaTiO3 ceramics prepared by a solid state reaction method. J Magn 14(3):120–123CrossRefGoogle Scholar
  29. 29.
    Kim JS, Cheon CI, Lee CH et al (2004) Weak ferromagnetism in the ferroelectric BiFeO3-ReFeO3-BaTiO3 solid solutions (Re = Dy, La). J Appl Phys 96:468–474CrossRefGoogle Scholar
  30. 30.
    Cen Z, Zhou C, Cheng J et al (2013) Effect of Zr4+ substitution on thermal stability and electrical properties of high temperature BiFe0.99Al0.01O3–BaTi1−xZrxO3 ceramics. J Alloy Compd 567:110–114CrossRefGoogle Scholar
  31. 31.
    Shan X, Zhou C, Cen Z et al (2013) Bi(Zn1/2Ti1/2)O3 modified BiFeO3–BaTiO3 lead-free piezoelectric ceramics with high temperature stability. Ceram Int 39(6):6707–6712CrossRefGoogle Scholar
  32. 32.
    Zhou C, Feteira A, Shan X et al (2012) Remarkably high-temperature stable piezoelectric properties of Bi(Mg0.5Ti0.5)O3 modified BiFeO3–BaTiO3 ceramics. Appl Phys Lett 101(3):032901CrossRefGoogle Scholar
  33. 33.
    Zhou X, Zhou C, Zhou Q et al (2014) Investigation of Structural and Electrical Properties of B-Site Complex Ion (Mg1/3Nb2/3)4+-Modified High-Curie-Temperature BiFeO3-BaTiO3 Ceramics. J Electron Mater 43(3):755–760CrossRefGoogle Scholar
  34. 34.
    Zhou Q, Zhou C, Yang H et al (2012) Dielectric, ferroelectric, and piezoelectric properties of Bi(Ni1/2Ti1/2)O3-modified BiFeO3–BaTiO3 ceramics with high curie temperature. J Am Ceram Soc 95(12):3889–3893CrossRefGoogle Scholar
  35. 35.
    Cen Z, Zhou C, Yang H et al (2013) Structural, ferroelectric and piezoelectric properties of Mn-modified BiFeO3–BaTiO3 high-temperature ceramics. J Mater Sci-Mater Electron 24(10):3952–3957CrossRefGoogle Scholar
  36. 36.
    Zheng Q, Luo L, Lam KH et al (2014) Enhanced ferroelectricity, piezoelectricity, and ferromagnetism in Nd-modified BiFeO3-BaTiO3 lead-free ceramics. J Appl Phys 116(18):184101CrossRefGoogle Scholar
  37. 37.
    Liu XH, Xu Z, Qu SB et al (2008) Ferroelectric and ferromagnetic properties of Mn-doped 0.7BiFeO3-0.3BaTiO3 solid solution. Ceram Int 34(4):797–801CrossRefGoogle Scholar
  38. 38.
    Guo Y, Xiao P, Wen R et al (2015) Critical roles of Mn-ions in enhancing the insulation, piezoelectricity and multiferroicity of BiFeO3-based lead-free high temperature ceramics. J Mater Chem C 3(22):5811–5824CrossRefGoogle Scholar
  39. 39.
    Chen J, Jin G, Wang CM et al (2014) Reduced Dielectric Loss and Strain Hysteresis in Fe and Mn Co-modified High-Temperature BiScO3–PbTiO3 Ceramics. J Am Ceram Soc 97(12):3890–3896CrossRefGoogle Scholar
  40. 40.
    Chen J, Cheng J, Dong S (2014) Review on high temperature piezoelectric ceramics and actuators based on BiScO3-PbTiO3 solid solutions. J Adv Dielect 4(01):1430002CrossRefGoogle Scholar
  41. 41.
    Kungl H, Fett T, Wagner S, Hoffmann MJ (2007) Nonlinearity of strain and strain hysteresis in morphotropic LaSr-doped lead zirconate titanate under unipolar cycling with high electric fields. J Appl Phys 101:044101CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Qiang Li
    • 1
  • Jianxin Wei
    • 1
  • Jinrong Cheng
    • 1
  • Jianguo Chen
    • 1
  1. 1.School of Materials Science and EngineeringShanghai UniversityShanghaiChina

Personalised recommendations