Advertisement

Journal of Materials Science

, Volume 52, Issue 1, pp 173–184 | Cite as

Efficient ethanol/water separation via functionalized nanoporous graphene membranes: insights from molecular dynamics study

  • Qi Shi
  • Zhongjin He
  • Krishna M. Gupta
  • Yunhui Wang
  • Ruifeng Lu
Original Paper

Abstract

Systematic molecular dynamics simulations are conducted to study the separation of ethanol/water mixture through single-layer graphene with designed nanoscale pores. The effects of pore size, chemical functionalization, and applied pressure were investigated. It was found that the diameter of pore plays a key role for efficient separation of ethanol from water. With appropriate diameter, water molecules can pass through but flow of ethanol is essentially blocked. Compared to hydrophobic, hydrophilic functionalization is found to be more efficient for ethanol/water separation as energy barrier for water molecule is less than ethanol in case of hydrophilic porous graphene membrane. Overall, our results indicate that the flux through hydrophilic functionalized (P2_OH) graphene membrane is nearly four times higher than conventional reverse osmosis membranes with a good selectivity for ethanol/water separation. This simulation study provides molecular-level understanding of ethanol/water separation through functionalized nonporous graphene and reveals the key governing factors that are essential for designing novel graphene membranes for bioethanol purification.

Keywords

Molecular Dynamic Simulation Pervaporation Separation Performance Ethanol Molecule Extractive Distillation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by NSF of China (Grant Nos. 21373113, 21506178), Fundamental Research Funds for the Central Universities (Grant No. 30920140111008), and the National University of Singapore (R 279 000 437 112). Q. Shi also acknowledges the support from the program of China Scholarship Council (CSC).

Supplementary material

10853_2016_319_MOESM1_ESM.docx (795 kb)
Supplementary material 1 (DOCX 795 kb)

References

  1. 1.
    Cherubini F, Jungmeier G (2010) LCA of a biorefinery concept producing bioethanol, bioenergy, and chemicals from switchgrass. Int J Life Cycle Assess 15:53–66CrossRefGoogle Scholar
  2. 2.
    Katwal RPS, Soni PL (2003) Biofuels: an opportunity for socio-economic development and cleaner environment. Indian For 129:939–949Google Scholar
  3. 3.
    Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508CrossRefGoogle Scholar
  4. 4.
    Manzetti S, Andersen O (2015) A review of emission products from bioethanol and its blends with gasoline. Background for new guidelines for emission control. Fuel 140:293–301CrossRefGoogle Scholar
  5. 5.
    Zoeldy M (2011) Ethanol-biodiesel-diesel blends as a diesel extender option on compression ignition engines. Transport 26:303–309CrossRefGoogle Scholar
  6. 6.
    Hromadko J, Miler P, Kotek M (2011) Environmental benefits of fuel E10. Listy Cukrovarnicke a Reparske 127:398–401Google Scholar
  7. 7.
    Mitschke J, Georg J, Scholz I et al (2011) An experimentally anchored map of transcriptional start sites in the model cyanobacterium Synechocystis sp PCC6803. Proc Natl Acad Sci USA 108:2124–2129CrossRefGoogle Scholar
  8. 8.
    Lisboa CC, Butterbach-Bahl K, Mauder M, Kiese R (2011) Bioethanol production from sugarcane and emissions of greenhouse gases—known and unknowns. Glob Change Biol Bioenerg 3:277–292CrossRefGoogle Scholar
  9. 9.
    Hong KK, Vongsangnak W, Vemuri GN, Nielsen J (2011) Unravelling evolutionary strategies of yeast for improving galactose utilization through integrated systems level analysis. Proc Natl Acad Sci USA 108:12179–12184CrossRefGoogle Scholar
  10. 10.
    Kang Q, Huybrechts J, Van der Bruggen B, Baeyens J, Tan T, Dewil R (2014) Hydrophilic membranes to replace molecular sieves in dewatering the bio-ethanol/water azeotropic mixture. Sep Purif Technol 136:144–149CrossRefGoogle Scholar
  11. 11.
    Suratago T, Taokaew S, Kanjanamosit N, Kanjanaprapakul K, Burapatana V, Phisalaphong M (2015) Development of bacterial cellulose/alginate nanocomposite membrane for separation of ethanol-water mixtures. J Ind Eng Chem 32:305–312CrossRefGoogle Scholar
  12. 12.
    Li J, You C, Lyu Z, Zhang C, Chen L, Qi Z (2015) Fuel-based ethanol dehydration process directly extracted by gasoline additive. Sep Purif Technol 149:9–15CrossRefGoogle Scholar
  13. 13.
    Errico M, Ramirez-Marquez C, Torres Ortega CE, Rong BG, Gabriel Segovia-Hernandez J (2015) Design and control of an alternative distillation sequence for bioethanol purification. J Chem Technol Biotechnol 90:2180–2185CrossRefGoogle Scholar
  14. 14.
    Wang N, Liu J, Li J, Gao J, Ji S, Li JR (2015) Tuning properties of silicalite-1 for enhanced ethanol/water pervaporation separation in its PDMS hybrid membrane. Microporous Mesoporous Mater 201:35–42CrossRefGoogle Scholar
  15. 15.
    Samanta HS, Ray SK (2015) Separation of ethanol from water by pervaporation using mixed matrix copolymer membranes. Sep Purif Technol 146:176–186CrossRefGoogle Scholar
  16. 16.
    Zhang K, Zhang L, Jiang J (2013) Adsorption of C1–C4 alcohols in zeolitic imidazolate framework-8: effects of force fields, atomic charges, and framework flexibility. J Phys Chem C 117:25628–25635CrossRefGoogle Scholar
  17. 17.
    Mason CR, Buonomenna MG, Golemme G et al (2013) New organophilic mixed matrix membranes derived from a polymer of intrinsic microporosity and silicalite-1. Polymer 54:2222–2230CrossRefGoogle Scholar
  18. 18.
    Yang JZ, Liu QL, Wang HT (2007) Analyzing adsorption and diffusion behaviors of ethanol/water through silicalite membranes by molecular simulation. J Membr Sci 291:1–9CrossRefGoogle Scholar
  19. 19.
    Yang RX, Wang TT, Deng WQ (2015) Extraordinary capability for water treatment achieved by a perfluorous conjugated microporous polymer. Sci Rep 5:10155CrossRefGoogle Scholar
  20. 20.
    Wang J, Sng W, Yi G, Zhang Y (2015) Imidazolium salt-modified porous hypercrosslinked polymers for synergistic CO2 capture and conversion. Chem Commun 51:12076–12079CrossRefGoogle Scholar
  21. 21.
    Scholes CA, Jin J, Stevens GW, Kentish SE (2015) Competitive permeation of gas and water vapour in high free volume polymeric membranes. J Polym Sci Polym Phys 53:719–728CrossRefGoogle Scholar
  22. 22.
    Saleh M, Kim KS (2015) Highly selective CO2 adsorption performance of carbazole based microporous polymers. RSC Adv 5:41745–41750CrossRefGoogle Scholar
  23. 23.
    Saleh M, Baek SB, Lee HM, Kim KS (2015) Triazine-based microporous polymers for selective adsorption of CO2. J Phys Chem C 119:5395–5402CrossRefGoogle Scholar
  24. 24.
    Wu XM, Zhang QG, Lin PJ, Qu Y, Zhu AM, Liu QL (2015) Towards enhanced CO2 selectivity of the PIM-1 membrane by blending with polyethylene glycol. J Membr Sci 493:147–155CrossRefGoogle Scholar
  25. 25.
    Madrid E, Cottis P, Rong Y et al (2015) Water desalination concept using an ionic rectifier based on a polymer of intrinsic microporosity (PIM). J Mater Chem A 3:15849–15853CrossRefGoogle Scholar
  26. 26.
    Jue ML, Lively RP (2015) Targeted gas separations through polymer membrane functionalization. React Funct Polym 86:88–110CrossRefGoogle Scholar
  27. 27.
    Diez-Pascual AM, Gomez-Fatou MA, Ania F, Flores A (2015) Nanoindentation in polymer nanocomposites. Prog Mater Sci 67:1–94CrossRefGoogle Scholar
  28. 28.
    Saleh M, Lee HM, Kemp KC, Kim KS (2014) Highly stable CO2/N2 and CO2/CH4 selectivity in hyper-cross-linked heterocyclic porous polymers. ACS Appl Mat Interfaces 6:7325–7333CrossRefGoogle Scholar
  29. 29.
    Gorgojo P, Karan S, Wong HC, Jimenez-Solomon MF, Cabral JT, Livingston AG (2014) Ultrathin polymer films with intrinsic microporosity: anomalous solvent permeation and high flux membranes. Adv Funct Mater 24:4729–4737CrossRefGoogle Scholar
  30. 30.
    Byun J, Je S-H, Patel HA, Coskun A, Yavuz CT (2014) Nanoporous covalent organic polymers incorporating Troger’s base functionalities for enhanced CO2 capture. J Mater Chem A 2:12507–12512CrossRefGoogle Scholar
  31. 31.
    Wu D, Xu F, Sun B, Fu R, He H, Matyjaszewski K (2012) Design and preparation of porous polymers. Chem Rev 112:3959–4015CrossRefGoogle Scholar
  32. 32.
    Patel HA, Yavuz CT (2012) Noninvasive functionalization of polymers of intrinsic microporosity for enhanced CO2 capture. Chem Commun 48:9989–9991CrossRefGoogle Scholar
  33. 33.
    Li FY, Xiao Y, Chung TS, Kawi S (2012) High-performance thermally self-cross-linked polymer of intrinsic microporosity (PIM-1) membranes for energy development. Macromolecules 45:1427–1437CrossRefGoogle Scholar
  34. 34.
    Du N, Park HB, Dal-Cin MM, Guiver MD (2012) Advances in high permeability polymeric membrane materials for CO2 separations. Energy Environ Sci 5:7306–7322CrossRefGoogle Scholar
  35. 35.
    Dawson R, Cooper AI, Adams DJ (2012) Nanoporous organic polymer networks. Prog Polym Sci 37:530–563CrossRefGoogle Scholar
  36. 36.
    Larsen GS, Lin P, Hart KE, Colina CM (2011) Molecular simulations of PIM-1-like polymers of intrinsic microporosity. Macromolecules 44:6944–6951CrossRefGoogle Scholar
  37. 37.
    Heuchel M, Fritsch D, Budd PM, McKeown NB, Hofmann D (2008) Atomistic packing model and free volume distribution of a polymer with intrinsic microporosity (PIM-1). J Membr Sci 318:84–99CrossRefGoogle Scholar
  38. 38.
    Yi S, Qi B, Su Y, Wan Y (2015) Effects of fermentation by-products and inhibitors on pervaporative recovery of biofuels from fermentation broths with novel silane modified silicalite-1/PDMS/PAN thin film composite membrane. Chem Eng J 279:547–554CrossRefGoogle Scholar
  39. 39.
    Hu M, Gao L, Fu W et al (2015) High-performance interpenetrating polymer network polyurethane pervaporation membranes for butanol recovery. J Chem Technol Biotechnol 90:2195–2207CrossRefGoogle Scholar
  40. 40.
    Chai L, Li H, Zheng X et al (2015) Pervaporation separation of ethanol-water mixtures through B-ZSM-11 zeolite membranes on macroporous supports. J Membr Sci 491:168–175CrossRefGoogle Scholar
  41. 41.
    Wei P, Cheng L-H, Zhang L, Xu X-H, H-l Chen, C-j Gao (2014) A review of membrane technology for bioethanol production. Renew Sus Energ Rev 30:388–400CrossRefGoogle Scholar
  42. 42.
    Nalaparaju A, Zhao XS, Jiang JW (2011) Biofuel purification by pervaporation and vapor permeation in metal-organic frameworks: a computational study. Energy Environ Sci 4:2107–2116CrossRefGoogle Scholar
  43. 43.
    Wee LH, Li Y, Zhang K et al (2015) Submicrometer-sized ZIF-71 filled organophilic membranes for improved bioethanol recovery: mechanistic insights by monte carlo simulation and FTIR spectroscopy. Adv Funct Mater 25:516–525CrossRefGoogle Scholar
  44. 44.
    Zhang K, Nalaparaju A, Chen Y, Jiang J (2014) Biofuel purification in zeolitic imidazolate frameworks: the significant role of functional groups. Phys Chem Chem Phys 16:9643–9655CrossRefGoogle Scholar
  45. 45.
    Celebi K, Buchheim J, Wyss RM et al (2014) Ultimate permeation across atomically thin porous graphene. Science 344:289–292CrossRefGoogle Scholar
  46. 46.
    Joshi RK, Carbone P, Wang FC et al (2014) Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343:752–754CrossRefGoogle Scholar
  47. 47.
    Zhao J, Deng Q, Bachmatiuk A et al (2014) Free-standing single-atom-thick iron membranes suspended in graphene pores. Science 343:1228–1232CrossRefGoogle Scholar
  48. 48.
    Li H, Song Z, Zhang X et al (2013) Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science 342:95–98CrossRefGoogle Scholar
  49. 49.
    Kim HW, Yoon HW, Yoon SM et al (2013) Selective gas transport through few-layered graphene and graphene oxide membranes. Science 342:91–95CrossRefGoogle Scholar
  50. 50.
    Nair RR, Wu HA, Jayaram PN, Grigorieva IV, Geim AK (2012) Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335:442–444CrossRefGoogle Scholar
  51. 51.
    Shan M, Xue Q, Jing N et al (2012) Influence of chemical functionalization on the CO2/N2 separation performance of porous graphene membranes. Nanoscale 4:5477–5482CrossRefGoogle Scholar
  52. 52.
    Schrier J (2011) Fluorinated and nanoporous graphene materials as sorbents for gas separations. ACS Appl Mater Interfaces 3:4451–4458CrossRefGoogle Scholar
  53. 53.
    Du H, Li J, Zhang J, Su G, Li X, Zhao Y (2011) Separation of hydrogen and nitrogen gases with porous graphene membrane. J Phys Chem C 115:23261–23266CrossRefGoogle Scholar
  54. 54.
    Sun C, Wen B, Bai B (2015) Recent advances in nanoporous graphene membrane for gas separation and water purification. Science Bulletin 60:1807–1823CrossRefGoogle Scholar
  55. 55.
    Darvishi M, Foroutan M (2015) Mechanism of water separation from a gaseous mixture via nanoporous graphene using molecular dynamics simulation. RSC Adv 5:81282–81294CrossRefGoogle Scholar
  56. 56.
    Chen Q, Yang X (2015) Pyridinic nitrogen doped nanoporous graphene as desalination membrane: molecular simulation study. J Membr Sci 496:108–117CrossRefGoogle Scholar
  57. 57.
    Kang Y, Zhang Z, Shi H et al (2014) Na+ and K+ ion selectivity by size-controlled biomimetic graphene nanopores. Nanoscale 6:10666–10672CrossRefGoogle Scholar
  58. 58.
    He Z, Zhou J, Lu X, Corry B (2013) Bioinspired graphene nanopores with voltage-tunable ion selectivity for Na+ and K+. ACS Nano 7:10148–10157CrossRefGoogle Scholar
  59. 59.
    Sun C, Boutilier MSH, Au H et al (2014) Mechanisms of molecular permeation through nanoporous graphene membranes. Langmuir 30:675–682CrossRefGoogle Scholar
  60. 60.
    Cohen-Tanugi D, Grossman JC (2014) Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination. J Chem Phys 141:074704CrossRefGoogle Scholar
  61. 61.
    Cohen-Tanugi D, Grossman JC (2014) Mechanical strength of nanoporous graphene as a desalination membrane. Nano Lett 14:6171–6178CrossRefGoogle Scholar
  62. 62.
    Hou Y, Xu Z, Yang X (2016) Interface-induced affinity sieving in nanoporous graphenes for liquid-phase mixtures. J Phys Chem C 120:4053–4060CrossRefGoogle Scholar
  63. 63.
    Cohen-Tanugi D, Grossman JC (2012) Water desalination across nanoporous graphene. Nano Lett 12:3602–3608CrossRefGoogle Scholar
  64. 64.
    Wang Y, Chen S, Qiu L et al (2015) Graphene-directed supramolecular assembly of multifunctional polymer hydrogel membranes. Adv Funct Mater 25:126–133CrossRefGoogle Scholar
  65. 65.
    Li Y, Chopra N (2015) Progress in large-scale production of graphene. Part 1: chemical methods. JOM 67:34–43CrossRefGoogle Scholar
  66. 66.
    Jiang S, Shi T, Zhan X et al (2015) Scalable fabrication of carbon-based MEMS/NEMS and their applications: a review. J Micromech Microeng 25:113001CrossRefGoogle Scholar
  67. 67.
    Candelaria SL, Shao Y, Zhou W et al (2012) Nanostructured carbon for energy storage and conversion. Nano Energy 1:195–220CrossRefGoogle Scholar
  68. 68.
    Vanleeuwen ME (1994) Derivation of stockmayer potential parameters for polar fluids. Fluid Phase Equilib 99:1–18CrossRefGoogle Scholar
  69. 69.
    Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447CrossRefGoogle Scholar
  70. 70.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRefGoogle Scholar
  71. 71.
    Zhu FQ, Tajkhorshid E, Schulten K (2002) Pressure-induced water transport in membrane channels studied by molecular dynamics. Biophys J 83:154–160CrossRefGoogle Scholar
  72. 72.
    Ruiz L, Wu Y, Keten S (2015) Tailoring the water structure and transport in nanotubes with tunable interiors. Nanoscale 7:121–132CrossRefGoogle Scholar
  73. 73.
    Heiranian M, Farimani AB, Aluru NR (2015) Water desalination with a single-layer MoS2 nanopore. Nature Commun 6:8616CrossRefGoogle Scholar
  74. 74.
    Ding M, Szymczyk A, Ghoufi A (2015) On the structure and rejection of ions by a polyamide membrane in pressure-driven molecular dynamics simulations. Desalination 368:76–80CrossRefGoogle Scholar
  75. 75.
    Kou J, Zhou X, Lu H, Wu F, Fan J (2014) Graphyne as the membrane for water desalination. Nanoscale 6:1865–1870CrossRefGoogle Scholar
  76. 76.
    Xue M, Qiu H, Guo W (2013) Exceptionally fast water desalination at complete salt rejection by pristine graphyne monolayers. Nanotechnology 24:505720CrossRefGoogle Scholar
  77. 77.
    Turgman-Cohen S, Araque JC, Hoek EMV, Escobedo FA (2013) Molecular dynamics of equilibrium and pressure-driven transport properties of water through LTA-type zeolites. Langmuir 29:12389–12399CrossRefGoogle Scholar
  78. 78.
    Chan WF, Chen HY, Surapathi A et al (2013) Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination. ACS Nano 7:5308–5319CrossRefGoogle Scholar
  79. 79.
    Hoover WG (1985) Canonical dynamics—equilibrium phase-space distributions. Phys Rev A 31:1695–1697CrossRefGoogle Scholar
  80. 80.
    Nose S (1984) A unified formulation of the constant temperature molecular-dynamics methods. J Chem Phys 81:511–519CrossRefGoogle Scholar
  81. 81.
    Cohen-Tanugi D, Lin LC, Grossman JC (2016) Multilayer nanoporous graphene membranes for water desalination. Nano Lett 16:1027–1033CrossRefGoogle Scholar
  82. 82.
    Zhang LL, Wu G, Jiang JW (2014) Adsorption and diffusion of CO2 and CH4 in zeolitic imidazolate framework-8: effect of structural flexibility. J Phys Chem C 118:8788–8794CrossRefGoogle Scholar
  83. 83.
    Roux B (1995) The calculation of the potential of mean force using computer-simulations. Comput Phys Commun 91:275–282CrossRefGoogle Scholar
  84. 84.
    Kirkwood JG (1935) Statistical mechanics of fluid mixtures. J Chem Phys 3:300–313CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Qi Shi
    • 1
    • 2
  • Zhongjin He
    • 2
  • Krishna M. Gupta
    • 2
  • Yunhui Wang
    • 1
    • 2
  • Ruifeng Lu
    • 1
  1. 1.Department of Applied PhysicsNanjing University of Science and TechnologyNanjingChina
  2. 2.Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations