Advertisement

Journal of Materials Science

, Volume 51, Issue 23, pp 10632–10640 | Cite as

Functionalized stellate macroporous silica nanospheres for CO2 mitigation

  • Daniela R. Radu
  • Nicholas A. Pizzi
  • Cheng-Yu Lai
Original Paper

Abstract

Carbon capture represents an integral part of the CO2 mitigation efforts, and involves the demonstration of effective and inexpensive CO2 capture technologies. We report the first demonstration of an amine-functionalized stellate macroporous silica as a platform for effective CO2 absorption, with potential application in current fossil-fuel burning plants. The work demonstrates that the facile impregnation of the silica platform with tetraethylenepentamine results in a high-performing sorbent for carbon dioxide. The CO2 absorption data exceed the performance of other reported silica–amine matrices for carbon capture, showing an amount of over 4 mmol CO2/g sorbent at low temperature, simulating the flue gas temperature. The platform is robust, showing recyclability and >85 % mass conservation of sorbent upon nine cycles. In addition, the stellate MSNs show high CO2 selectivity at room temperature, indicating that the presence of nitrogen in flue gas will not impair the CO2 absorption performance. The results could lead to a simple and inexpensive new technology for CO2 mitigation.

Keywords

Tepa Silica Nanospheres Tetraethylenepentamine Ammonium Carbamate Oxyfuel Combustion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors thank the U.S. Department of Energy for funding through grant number DE-FE0023541, and U.S. National Science Foundation under Grant No. 1458980 (N. Pizzi graduate stipend).

Compliance with ethical standards

Conflict of interest

The authors do not have competing interest and declare no conflict of interest.

Supplementary material

10853_2016_284_MOESM1_ESM.docx (4.8 mb)
Supplementary material 1 (DOCX 4888 kb)

References

  1. 1.
    Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–277CrossRefGoogle Scholar
  2. 2.
    Haszeldine RS (2009) Carbon capture and storage: how green can black be? Science 325:1647–1652CrossRefGoogle Scholar
  3. 3.
    Han B, Zhou C, Wu J, Tempel DJ, Cheng H (2011) Understanding CO2 capture mechanisms in aqueous monoethanolamine via first principles simulations. J Phys Chem Lett 2:522–526CrossRefGoogle Scholar
  4. 4.
    Figueroa JD, Fout T, Plasynski S, McIlvried H, Srivastava RD (2008) Advances in CO2 capture technology—the U.S. Department of Energy’s Carbon Sequestration Program. Int J Greenh Gas Control 2:9–20CrossRefGoogle Scholar
  5. 5.
    Zhou Y, Liu J, Xiao M, Meng Y, Sun L (2016) Designing supported ionic liquids (ILs) within inorganic nanosheets for CO2 capture applications. ACS Appl Mater Interfaces 8:5547–5555CrossRefGoogle Scholar
  6. 6.
    Shi Y-Q, Zhu J, Liu X-Q, Geng J-C, Sun L-B (2014) Molecular template-directed synthesis of microporous polymer networks for highly selective CO2 capture. ACS Appl Mater Interfaces 6:20340–20349CrossRefGoogle Scholar
  7. 7.
    Liu F-Q, Wang L, Huang Z-G, Li C-Q, Li W, Li R-X, Li W-H (2014) Amine-tethered adsorbents based on three-dimensional macroporous silica for CO2 capture from simulated flue gas and air. ACS Appl Mater Interfaces 6:4371–4381CrossRefGoogle Scholar
  8. 8.
    Wang J, Senkovska I, Oschatz M, Lohe MR, Borchardt L, Heerwig A, Liu Q, Kaskel S (2013) Imine-linked polymer-derived nitrogen-doped microporous carbons with excellent CO2 capture properties. ACS Appl Mater Interfaces 5:3160–3167CrossRefGoogle Scholar
  9. 9.
    Luo XY, Ding F, Lin WJ, Qi YQ, Li HR, Wang CM (2014) Efficient and energy-saving CO2 capture through the entropic effect induced by the intermolecular hydrogen bonding in anion-functionalized ionic liquids. J Phys Chem Lett 5:381–386CrossRefGoogle Scholar
  10. 10.
    Sun L-B, Li A-G, Liu X-D, Liu X-Q, Feng D, Lu W, Yuan D, Zhou H-C (2015) Facile fabrication of cost-effective porous polymer networks for highly selective CO2 capture. J Mater Chem A 3:3252–3256CrossRefGoogle Scholar
  11. 11.
    Hahn MW, Jelic J, Berger E, Reuter K, Jentys A, Lercher JA (2016) Role of amine functionality for CO2 chemisorption on silica. J Phys Chem B 120:1988–1995CrossRefGoogle Scholar
  12. 12.
    Didas SA, Choi S, Chaikittisilp W, Jones CW (2015) Amine-oxide hybrid materials for CO2 capture from ambient air. Acc Chem Res 48:2680–2687CrossRefGoogle Scholar
  13. 13.
    Li K-M, Jiang J-G, Tian S-C, Chen X-J, Yan F (2014) Influence of silica types on synthesis and performance of amine-silica hybrid materials used for CO2 capture. J Phys Chem C 118:2454–2462CrossRefGoogle Scholar
  14. 14.
    Zhang X, Zheng X, Zhang S, Zhao B, Wu W (2012) AM-TEPA impregnated disordered mesoporous silica as CO2 capture adsorbent for balanced adsorption–desorption properties. Ind Eng Chem Res 51:15163–15169CrossRefGoogle Scholar
  15. 15.
    Berger E, Hahn MW, Przybilla T, Winter B, Spiecker E, Jentys A, Lercher JA (2016) Impact of solvents and surfactants on the self-assembly of nanostructured amine functionalized silica spheres for CO2 capture. J Energy Chem 25:327–335CrossRefGoogle Scholar
  16. 16.
    Danon A, Stair PC, Weitz E (2011) FTIR study of CO2 adsorption on amine-grafted SBA-15: elucidation of adsorbed species. J Phys Chem C 115:11540–11549CrossRefGoogle Scholar
  17. 17.
    Harlick PJE, Sayari A (2006) Applications of pore-expanded mesoporous silicas. 3. Triamine silane grafting for enhanced CO2 adsorption. Ind Eng Chem Res 45:3248–3255CrossRefGoogle Scholar
  18. 18.
    Builes S, López-Aranguren P, Fraile J, Vega LF, Domingo C (2015) Analysis of CO2 adsorption in amine-functionalized porous silicas by molecular simulations. Energy Fuels 29:3855–3862CrossRefGoogle Scholar
  19. 19.
    Zhang K, Xu L-L, Jiang J-G, Calin N, Lam K-F, Zhang S-J, Wu H-H, Wu G-D, Albela B, Bonneviot L, Wu P (2013) Facile large-scale synthesis of monodisperse mesoporous silica nanospheres with tunable pore structure. J Am Chem Soc 135:2427–2430CrossRefGoogle Scholar
  20. 20.
    Thommes M, Kaneko K, Neimark A, Olivier J, Rodriguez-Reynoso F, Rouquerol J, Sing K (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9–10):1051–1069Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Daniela R. Radu
    • 1
    • 2
  • Nicholas A. Pizzi
    • 1
  • Cheng-Yu Lai
    • 1
  1. 1.Department of ChemistryDelaware State UniversityDoverUSA
  2. 2.Department of Materials Science and EngineeringUniversity of DelawareNewarkUSA

Personalised recommendations