Skip to main content
Log in

Tuning of optical and magnetic properties of nanostructured CdS thin films via nickel doping

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Redesigning the properties of a non-magnetic semiconductor with a magnetic impurity is a recent research attraction due to its potential in optoelectronics and spintronics devices. Semiconductors, especially II–VI group, are very sensitive to external perturbations through which their optical and electronic properties can be tailored. Here we discuss the fabrication of CdS thin films by chemical bath deposition technique and elaborate their structural, morphological, optical and magnetic properties. Structural studies show that the as-prepared films exist in hexagonal form, while the morphological analysis provides clear evidences of smaller grains disseminated over the surface of the thin film. Higher band gap obtained in all samples hints towards the grain size-induced quantum confinement effect. The pristine CdS thin film has a blue shift in the band gap of 0.218 eV compared to their bulk cousins. The magnetic response of the films recorded using SQUID shows that the incorporation of Ni induces a tunable magnetization in CdS thin films with maximum magnetization of 7.3 emu/cc for 10 % of Ni doping. Thus, the incorporation of Ni can tailor the optical as well as magnetic properties of CdS, and the outcomes extend their application potential both in luminescent, photovoltaic and spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Lazell M, O’Brien P (1999) A novel single source precursor route to self capping CdS quantum dots. Chem Commun 20:2041–2042. doi:10.1039/a906160f

    Article  Google Scholar 

  2. Thambidurai M, Muthukumarasamy N, Agilan S, Sabari Arul N, Murugan N, Balasundaraprabhu R (2011) Structural and optical characterization of Ni-doped CdS quantum dots. J Mater Sci 46:3200–3206. doi:10.1007/s10853-010-5204-y

    Article  Google Scholar 

  3. Thambidurai M, Muthukumarasamy N, Velauthapillai D, Murugan N, Chaudhuri J, Parameswaran S et al (2011) Effect of Cr-doping on the structural and optical properties of CdS nanoparticles prepared by chemical precipitation method. J Mater Sci 23:618–624. doi:10.1007/s10854-011-0454-2

    Google Scholar 

  4. Kumar KS, Divya A, Reddy PS, Uthanna S, Martins R (2011) Structural and optical behaviour of Ni doped CdS nanoparticles synthesized by chemical co-precipitation method. Acta Phys Pol A 120:52–54

    Article  Google Scholar 

  5. Ganesh R, (2013) Cadmium sulfide doped films with different materials by chemical bath deposition process, Arch Phys 4 97–102. http://scholarsresearchlibrary.com/APR-vol4-iss2/APR-2013-4-2-97-102.pdf

  6. Salimian S, Farjami Shayesteh S (2012) Structural, optical and magnetic properties of Mn-doped CdS diluted magnetic semiconductor nanoparticles. J Supercond Nov Magn 25:2009–2014. doi:10.1007/s10948-012-1549-6

    Article  Google Scholar 

  7. Salimian S, Shayesteh SF (2010) Luminescence properties of manganese doped CdS nanoparticles under various synthesis conditions. Acta Phys Pol 118:2–5

    Google Scholar 

  8. Otaqsara S (2011) Optical characterization of Fe3 doped CdS nanoparticles synthesized by wet-chemical route turk. J Phys 35:341–347. doi:10.3906/fiz-0911-40

    Google Scholar 

  9. Khallaf H, Chai G, Lupan O, Chow L, Park S, Schulte A (2009) Characterization of gallium-doped CdS thin films grown by chemical bath deposition. Appl Surf Sci 255:4129–4134. doi:10.1016/j.apsusc.2008.10.115

    Article  Google Scholar 

  10. Kamran MA, Liu R, Shi LJ, Zou B, Zhang Q (2013) Near infrared emission band and origin in Ni(II)-doped cds nanoribbons by cvd technique. J Phys Chem C 117:17777–17785. doi:10.1021/jp402831n

    Article  Google Scholar 

  11. Ferrá-González SR, Berman-Mendoza D, García-Gutiérrez R, Castillo SJ, Ramírez-Bon R, Gnade BE et al (2014) Optical and structural properties of CdS thin films grown by chemical bath deposition doped with Ag by ion exchange. Optik 125:1533–1536. doi:10.1016/j.ijleo.2013.08.035

    Article  Google Scholar 

  12. Cruz JS, Pérez RC, Delgado GT, Angel OZ (2010) CdS thin films doped with metal-organic salts using chemical bath deposition. Thin Solid Films 518:1791–1795. doi:10.1016/j.tsf.2009.09.034

    Article  Google Scholar 

  13. Selvakumar S, Kumar SMR, Joseph GP, Rajarajan K, Madhavan J, Rajasekar SA et al (2007) Growth and characterization of pure and doped bis(thiourea) cadmium acetate single crystals. Mater Chem Phys 103:153–157. doi:10.1016/j.matchemphys.2007.02.005

    Article  Google Scholar 

  14. Singh VK, Chauhan P, Mishra SK, Srivastava RK (2012) Effect of indium doping and annealing on photoconducting property of wurtzite type CdS. Electron Mater Lett 8:295–299. doi:10.1007/s13391-012-2011-4

    Article  Google Scholar 

  15. Jafari A, Zakaria A, Rizwan Z, Ghazali MSM (2011) Effect of low concentration Sn doping on optical properties of CdS films grown by CBD technique. Int J Mol Sci 12:6320–6328. doi:10.3390/ijms12096320

    Article  Google Scholar 

  16. Bhushan S, Thakur D (1992) Photoconductivity of chemically deposited rare-earth-doped CdS films. J Mater Sci 3:35–40

    Google Scholar 

  17. Bhushan S, Thakur D (1992) Photoconductivity of chemically deposited rare-earth-doped CdS films. J Mater Sci 3:35–40. doi:10.1007/BF00701092

    Google Scholar 

  18. Okamoto S, Kobayashi M, Kanemitsu Y, Kushida T (2002) Fabrication and optical characterization of trivalent-rare-earth doped CdS nanocrystals. Phys Status Solidi B-Basic Res 229:481–484. doi:10.1002/1521-3951(200201)229:1<481:aid-pssb481>3.0.co;2-k

    Article  Google Scholar 

  19. Muthukumarasamy MTN (2013) Quantum confinement effects in Gd-doped CdS nanoparticles prepared by chemical precipitation technique. J Mater 24:4535–4541. doi:10.1007/s10854-013-1438-1

    Google Scholar 

  20. Liu K, Zhang JY, Wu X, Li B, Li B, Lu Y et al (2007) Fe-doped and (Zn, Fe) co-doped CdS films: Could the Zn doping affect the concentration of Fe2 + and the optical properties? Phys B Condens Matter 389:248–251. doi:10.1016/j.physb.2006.06.157

    Article  Google Scholar 

  21. Gajbhiye NS, Ningthoujam RS, Ahmed A, Panda DK, Umare SS, Sharma SJ (2008) Re-dispersible Li+ and Eu3+ co-doped CdS nanoparticles: luminescence studies. Pramana 70:313–321. doi:10.1007/s12043-008-0050-z

    Article  Google Scholar 

  22. Kumar S, Kumar S, Jain S, Verma NK (2012) Magnetic and structural characterization of transition metal co-doped CdS nanoparticles. Appl Nanosci 2:127–131. doi:10.1007/s13204-011-0046-8

    Article  Google Scholar 

  23. Sreenivas M, Harish GS, Reddy PS (2014) Synthesis and characterization of Mn, Ce Co-doped CDS nanoparticles synthesized via co-precipitation method. Int J Mod Eng Res 4:10–16

    Google Scholar 

  24. Giribabu G, Murali G, Vijayalakshmi RP (2014) Structural, magnetic and optical properties of cobalt and manganese codoped CdS nanoparticles. Mater Lett 117:298–301. doi:10.1016/j.matlet.2013.12.024

    Article  Google Scholar 

  25. Giribabu G, Murali G, Amaranatha Reddy D, Liu C, Vijayalakshmi RP (2013) Structural, optical and magnetic properties of Co doped CdS nanoparticles. J Alloys Compd 581:363–368. doi:10.1016/j.jallcom.2013.07.082

    Article  Google Scholar 

  26. Sharma P, Singh S, Virk HS (2010) Formation of CdS nanoparticles in microemulsion using different co-surfactant and water to surfactant molar ratio. Int J Nanosci Nanotechnol 6:236–243

    Google Scholar 

  27. Atay F, Kose S, Bilgin V, Akyuz I (2003) CdS: Ni films obtained by ultrasonic spray pyrolysis: effect of the Ni concentration. Mater Lett 57:3461–3472. doi:10.1016/S0167-577X(03)00100-9

    Article  Google Scholar 

  28. Firdous A, Singh D, Ahmad MM (2012) Electrical and optical studies of pure and Ni-doped CdS quantum dots. Appl Nanosci 3:13–18. doi:10.1007/s13204-012-0065-0

    Article  Google Scholar 

  29. Srinivasa Rao B, Rajesh Kumar B, Rajagopal Reddy V, Subba Rao T, Venkata Cshalapathi G (2011) Influence on optical properties of Nickel doped cadmium sulfide. Chalcogenide Lett 8:39–44

    Google Scholar 

  30. Smyntyna V, Semenenko B, Skobeeva V, Malushin N (2014) Photoactivation of luminescence in CdS nanocrystals. Beilstein J Nanotechnol 5:355–359. doi:10.3762/bjnano.5.40

    Article  Google Scholar 

  31. Premarani R, Jebaraj Devadasan J, Saravanakumar S, Chandramohan R, Mahalingam T (2015) Structural, optical and magnetic properties of Ni-doped CdS thin films prepared by CBD. J Mater Sci 26:2059–2065. doi:10.1007/s10854-014-2647-y

    Google Scholar 

  32. Liu XC, Shi EW, Chen ZZ, Zhang HW, Xiao B, Song LX (2006) High-temperature ferromagnetism in (Co, Al)-codoped ZnO powders. Appl Phys Lett 88:252503. doi:10.1063/1.2216887

    Article  Google Scholar 

  33. Cullity BD, Graham CD,(2008) Introduction to Magnetic Materials, 2nd edn. http://as.wiley.com/WileyCDA/WileyTitle/productCd-0471477419.html

Download references

Acknowledgements

N. Susha acknowledges DST for INSPIRE fellowship and financial support. Swapna S Nair acknowledges UGC (F. No. 20-1/2013), DST (YSS/2014/000431) and DBT (6292-P52/RGCB/PMD/DBT/RPKT/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapna S. Nair.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Susha, N., Mathew, R.J. & Nair, S.S. Tuning of optical and magnetic properties of nanostructured CdS thin films via nickel doping. J Mater Sci 51, 10526–10533 (2016). https://doi.org/10.1007/s10853-016-0273-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0273-1

Keywords

Navigation