Advertisement

Journal of Materials Science

, Volume 51, Issue 21, pp 9879–9888 | Cite as

Post annealing temperature-dependent morphological and electrochemical properties of copper hydroxide thin film electrodes obtained by anodization of copper

  • T. S. Ghadge
  • B. J. Lokhande
Original Paper

Abstract

Anodization of copper substrates was made in 1 M aqueous sodium hydroxide solution to prepare copper hydroxide thin films. The prepared samples (at 0.9 V) were annealed in air for 1 h by varying the annealing temperature from 523 to 673 K. XRD study confirms the orthorhombic crystal structure for copper hydroxide, whereas cubic to monoclinic crystal structure transformation was observed for copper oxide with increasing annealing temperature. The increase in granular size of copper oxide with temperature was clearly endorsed from morphological study. Electrochemical study reveals the pseudocapacitive behavior for the sample annealed at 598 K with optimum-specific capacitance of 6000 F/g at the scan rate 2 mV/s in 1 M NaOH. The Specific energy, Specific power, and Columbic efficiency (η) were calculated by using chronopotentiometric technique. Electrochemical impedance spectroscopy carried out in the frequency range of 1 mHz–1 MHz gives internal resistance which is about 1.75 Ω/cm2. The Randles equivalent circuit and its circuitry parameters are reported.

Keywords

Specific Capacitance Cu2O Copper Oxide Deposition Potential Thin Film Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors thank the DST-SERB for providing financial support through the project scheme 2014/DST-SERB/4688.

References

  1. 1.
    Meher SK, Justin P, Rao GR (2010) Pine-cone morphology and pseudocapacitive behavior of nanoporous nickel oxide. Electrochim Acta 55:8388CrossRefGoogle Scholar
  2. 2.
    Lokhande BJ, Ambare RC, Mane RS, Bhardwaj SR (2013) Concentration-dependant electrochemical supercapacitive performance of Fe2O3. Curr Appl Phys 6:985CrossRefGoogle Scholar
  3. 3.
    Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer-Plenum, New YorkCrossRefGoogle Scholar
  4. 4.
    Reddy ALM, Ramaprabhu S (2007) Nanocrystalline metal oxides dispersed multiwalled carbon nanotubes as supercapacitor electrodes. J Phys Chem C 111:7727CrossRefGoogle Scholar
  5. 5.
    Ishikawa M, Morita M, Ihara M, Matsuda Y (1994) Electric double-layer capacitor composed of activated carbon fiber cloth electrodes and solid polymer electrolytes containing alkyl ammonium salts. J Electrochem Soc 141:1730CrossRefGoogle Scholar
  6. 6.
    Mayer ST, Pekala RW, Kaschmitter JL (1993) The aerocapacitor: an electrochemical double-layer energy storage device. J Electrochem Soc 140:446CrossRefGoogle Scholar
  7. 7.
    Prasad KR, Munichandraian N (2002) Potentiodynamically deposited polyaniline on stainless steel inexpensive, high-performance electrodes for electrochemical supercapacitors. J Electrochem Soc 149:A1393CrossRefGoogle Scholar
  8. 8.
    Mitra S, Shukla AK, Sampath S (2001) Electrochemical capacitors with plasticized gel-polymer electrolytes. J Power Sources 101:213CrossRefGoogle Scholar
  9. 9.
    Hu CC, Huang YH (1999) Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitors. J Electrochem Soc 146:2465CrossRefGoogle Scholar
  10. 10.
    Chen WC, Hu CC, Wang CC, Min CK (2004) Electrochemical characterization of activated carbon–ruthenium oxide nanoparticles composites for supercapacitors. J Power Sources 125:292CrossRefGoogle Scholar
  11. 11.
    Zheng JP, Cygan PJ, Jow TR (1995) Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J Electrochem Soc 142:2699CrossRefGoogle Scholar
  12. 12.
    Park BO, Lokhande CD, Park HS, Jung KD, Joo OS (2004) Electrodeposited ruthenium oxide (RuO2) films for electrochemical supercapacitors. J Mater Sci 39:4313. doi: 10.1023/B:JMSC.0000033415.47096.db CrossRefGoogle Scholar
  13. 13.
    Wang D, Wang Q, Wang T (2011) Controlled synthesis of mesoporous hematite nanostructures and their application as electrochemical capacitor electrodes. Nanotechnology 22:135604CrossRefGoogle Scholar
  14. 14.
    Zhu J, Sharma YK, Zeng Z, Zhang X, Shrinivasan M, Mhaisalkar S, Zhang H, Hng HH, Yan QJ (2011) Cobalt oxide nanowall arrays on reduced graphene oxide sheets with controlled phase, grain size, and porosity for Li-ion battery electrodes. Phys Chem 115:8400Google Scholar
  15. 15.
    Kore RM, Mane RS, Naushad M, Khan MR, Lokhande BJ (2016) Nanomorphology-dependent pseudocapacitive properties of NiO electrodes engineered through a controlled potentiodynamic electrodeposition process. RSC Adv 6:24478CrossRefGoogle Scholar
  16. 16.
    Han DD, Jing XY, Wang J, Yang PP, Song DL, Liu JY (2012) Porous lanthanum doped NiO microspheres for supercapacitor application. J Electroanal Chem 682:37CrossRefGoogle Scholar
  17. 17.
    Sun Y, Hu X, Luo W, Huang Y (2011) Self-assembled hierarchical MoO2/graphene nanoarchitectures and their application as a high-performance anode material for lithium-ion batteries. ACS Nano 5:7100CrossRefGoogle Scholar
  18. 18.
    Zhang YX, Zhu SJ, Dong M, Liu CP, Wen ZQ (2013) Hydrothermally tailoring low-dimensional MnOx nanostructure and their high electrochemical performance. Int J Electrochem Sci 8:2407Google Scholar
  19. 19.
    Xiao Y, Zhang Q, Yan J, Wei T, Fan Z, Wei F (2012) Compressible aligned carbon nanotube/MnO2 as high-rate electrode materials for supercapacitors. J Electroanal Chem 4:32CrossRefGoogle Scholar
  20. 20.
    Ko S, Lee J, Yang HS, Park S, Jeong U (2012) Mesoporous CuO particles threaded with CNTs for high-performance lithium-ion battery anodes. Adv Mater 24:4451CrossRefGoogle Scholar
  21. 21.
    Wang G, Huang J, Chen S, Gao Y, CaO D (2011) Preparation and supercapacitance of CuO nanosheet arrays grown on nickel foam. J Power Sources 196:5756CrossRefGoogle Scholar
  22. 22.
    Shrestha NK, Yoon SJ, Lee M, Lee DY, Lim I, Mane RS, Sung MM, Han SH (2011) Self-organized growth of magnetic nanoporous thin film by alloy anodization. Microporous Mesoporous Mater 144:200CrossRefGoogle Scholar
  23. 23.
    Wu X, Bai H, Zhang J, Chen F, Shi G (2005) Copper hydroxide nanoneedle and nanotube arrays fabricated by anodization of copper. J Phys Chem B 109:22836CrossRefGoogle Scholar
  24. 24.
    Park SH, Kim HJ (2004) Unidirectionally aligned copper hydroxide crystalline nanorods from two-dimensional copper hydroxy nitrate. J Am Chem Soc 126:14368CrossRefGoogle Scholar
  25. 25.
    Jadhav VV, Shinde DV, Patil SA, Zate MK, Pawar S, Al-Osta A, Mane RS, Han SH (2014) Electrochemical properties of anodized copper hydroxide nanostructures. J Nanoeng Nanomanufacturing 4:1CrossRefGoogle Scholar
  26. 26.
    Zhang WX, Wen XG, Yang SH, Betra Y, Wang ZL (2003) Single crystalline scroll-type nanotube arrays of copper hydroxide synthesized at room temperature. Adv Mater 15:822CrossRefGoogle Scholar
  27. 27.
    Wen XG, Zhang WX, Yang SH (2003) Synthesis of Cu(OH)2 and CuO nanoribbon arrays on a copper surface. Langmuir 19:5898CrossRefGoogle Scholar
  28. 28.
    Patake VD, Joshi SS, Lokhande CD, Joo OS (2009) Electrodeposited porous and amorphous copper oxide film for application in supercapacitor. Mater Chem Phys 114:6CrossRefGoogle Scholar
  29. 29.
    Shaikh JS, Pawar RC, Moholkar AV, Kim JH, Patil PS (2011) CuO–PAA hybrid films: chemical synthesis and supercapacitor behavior. Appl Surf Sci 257:4389CrossRefGoogle Scholar
  30. 30.
    Johan MR, MohdSuan MS, Hawari NL, Ching HA (2011) Annealing effects on the properties of copper oxide thin films prepared by chemical deposition. Int J Electrochem Sci 6:6094Google Scholar
  31. 31.
    Yoon KH, Choi WJ, Kang DH (2000) Photoelectrochemical properties of copper oxide thin films coated on an n-Si substrate. J Thin solid films 372:250CrossRefGoogle Scholar
  32. 32.
    Oral AY, Mensur E, Aslan MH, Basaran E (2004) The preparation of copper(II) oxide thin films and the study of their microstructures and optical properties. Mater Chem Phys 83:140CrossRefGoogle Scholar
  33. 33.
    Qiang LJ, Xia MZ, Qian YD, Nan HY, Ping LY, Kuznotsov AY, Long DX (2012) Temperature dependence of Cu2O orientations in oxidation of Cu (111)/ZnO (0001) by oxygen plasma. Chin Phys B 21:076401CrossRefGoogle Scholar
  34. 34.
    Han S, Chen HY, Chu YB, Shih HC (2005) Phase transformation in copper oxide nanowires. Am Vac Soc 23:2558Google Scholar
  35. 35.
    Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley Publishing Company, Reading, p 284Google Scholar
  36. 36.
    Yang X, Fan K, Zhu Y, Shen J, Jiang X, Zhao P, Luan S, Li C (2013) Electric papers of graphene-coated Co3O4 fibers for high performance lithium-ion batteries. ACS Appl Mater Interfaces 5:997CrossRefGoogle Scholar
  37. 37.
    Ambare RC, Bharadwaj SR, Lokhande BJ (2013) Concentration and volume of the spraying solution affects on the capacitive behaviour of the Co3O4 thin films. Int J Renew Energy 3:212Google Scholar
  38. 38.
    Koneshan S, Rasaiah JC, Lynden-Bell RM, Lee SH (1998) Solvent structure, dynamics and ion mobility in aqueous solutions at 25 °C. J Phys Chem B 102:4193CrossRefGoogle Scholar
  39. 39.
    Chang J, Park M, Ham D, Ogale SB, Mane RS, Han SH (2008) Liquid-phase synthesized mesoporous electrochemical supercapacitors of nickel hydroxide. Electrochim Acta 53:5016CrossRefGoogle Scholar
  40. 40.
    Yan J, Wei T, Qiao WM, Shao B, Zhao QK, Zhang LJ, Fan ZJ (2010) Rapid macrowave assisted synthesis of grapheme nanosheet/Co3O4 composite for supercapacitor. Electrochem Acta 55:6973CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Physical SciencesSolapur UniversitySolapurIndia

Personalised recommendations