Skip to main content
Log in

Quality by design approach for SrTiO3 perovskite nanomaterials synthesis

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The current environmental and energy concerns at global level drive toward politics of sustainable development for a green economy growth. In this scenario, chemical sensors play an important role in regulating energetic, ecological, and productive efficiency because of their excellent potential to develop technology for online gas emissions monitoring and feedback system control. Since sensor performances are affected by size, morphology, crystalline structure, and stoichiometry of the sensing materials, the aim of this work is to study how the synthesis conditions affect the properties of sensing nanoparticles of strontium titanate perovskite oxide and develop mathematical models with predictive ability for the design of materials. The investigated ranges of operating conditions were pH levels from 2 to 12; CA/NO3 molar ratio from 0.09 to 0.17; CA/M molar ratio from 0.63 to 2.00, where CA, NO3, and M terms are related to citric acid, nitrate ions, and the total metals, including strontium and titanium. The results confirm that fuel-to-oxidizer molar ratio of the initial solution affects the properties of the synthesized nanopowder because of its significant effects on flame temperature, burning rate, and reaction time. Depending on the synthesis conditions, the crystallite size changes from 10 to 30 nm and the grain size from 20 to 50 nm. From reacting solution with stoichiometric amounts of fuels and oxidizers, it was obtained more crystalline, pure, and nanosized perovskite oxide powder. In addition, the solution acidity and the complexing agent amount affects the dissolution of metal ions, reflecting upon the homogeneity of the dried gel and the characteristics of the final products in turn. Finally, a quality by design approach, using multiple regression analysis, was successfully used to study the combustion synthesis process by defining the direct and indirect effects of pH, CA/NO3, and CA/M on synthesized nanomaterial properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21

Similar content being viewed by others

References

  1. Deptula A, Milkowska M, Lada W, Olczak T, Wawszczak D, Smolinski T, Brykala M, Chmielewski A, Zaza F, Goretta K (2012) Vitrification of nuclear wastes by complex sol–gel process. Adv Mater Res 518–523:3216–3220

    Article  Google Scholar 

  2. Smolinski T, Deptula A, Olczak T, Lada W, Brykala M, Wojtowicz P, Wawszczak D, Rogowski M, Zaza F (2014) Perovskite synthesis via complex 26 sol–gel process to immobilize radioactive waste elements. J Radio Nucl Chem 299(1):675–680

    Article  Google Scholar 

  3. Frangini S, Masci A, McPhail S, Soccio T, Zaza F (2014) Degradation behavior of a commercial 13Cr ferritic stainless steel (SS405) exposed to an ambient air atmosphere for IT-SOFC interconnect applications. Mater Chem Phys 144(3):491–497

    Article  Google Scholar 

  4. Zaza F, Pasquali M, Simonetti E, Paoletti C, Dell’Era A (2013) Innovative nanomaterials for fuel cells fed with biogas. Nuovo Cimento Soc Ital Fis C 36(2):73–81

    Google Scholar 

  5. Devianto H, Simonetti E, McPhail S, Zaza F, Cigolotti V, Paoletti C, Moreno A, La Barbera A, Luisetto I (2012) Electrochemical impedance study of the poisoning behaviour of Ni-based anodes at low concentrations of H2S in an MCFC. Int J Hydrog Energy 37(24):19312–19318

    Article  Google Scholar 

  6. Frangini S, Zaza F, Masci A (2012) Molten carbonate corrosion of a 13-Cr ferritic stainless steel protected by a perovskite conversion treatment: relationship with the coating microstructure and formation mechanism. Corros Sci 62:136–146

    Article  Google Scholar 

  7. Frangini S, Masci A, Zaza F (2011) Molten salt synthesis of perovskite conversion coatings: a novel approach for corrosion protection of stainless steels in molten carbonate fuel cells. Corros Sci 53(8):2539–2548

    Article  Google Scholar 

  8. Zaza F, Paoletti C, Lopresti R, Simonetti E, Pasquali M (2011) Multiple regression analysis of hydrogen sulphide poisoning in molten carbonate fuel cells used for waste-to-energy conversions. Int J Hydrog Energy 36(13):8119–8125

    Article  Google Scholar 

  9. Pozio A, Cemmi A, Carewska M, Paoletti C, Zaza F (2010) Characterization of gas diffusion electrodes for polymer electrolyte fuel cells. J Fuel Cell Sci Technol 7(4):0410031–0410037

    Article  Google Scholar 

  10. Zaza F, Paoletti C, LoPresti R, Simonetti E, Pasquali M (2010) Studies on sulfur poisoning and development of advanced anodic materials for waste-to-energy fuel cells applications. J Power Sources 195(13):4043–4050

    Article  Google Scholar 

  11. Ciccoli R, Cigolotti V, Lo Presti R, Massi E, McPhail S, Monteleone G, Moreno A, Naticchioni V, Paoletti C, Simonetti E, Zaza F (2010) Molten carbonate fuel cells fed with biogas: combating H2S. Waste Manag 30(6):1018–1024

    Article  Google Scholar 

  12. Paoletti C, Zaza F, Carewska M, LoPresti R, Simonetti E (2010) Performance study of nickel covered by lithium cobaltite cathode for molten carbonate fuel cells: a comparison in Li/K and Li/Na carbonate melts. J Fuel Cell Sci Technol 7(2):0210081–0210085

    Article  Google Scholar 

  13. Paoletti C, Carewska M, Presti R, Phail S, Simonetti E, Zaza F (2009) Performance analysis of new cathode materials for molten carbonate fuel cells. J Power Sources 193(1):292–297

    Article  Google Scholar 

  14. Pozio A, Zaza F, Masci A, Silva R (2008) Bipolar plate materials for PEMFCs: a conductivity and stability study. J Power Sources 179(2):631–639

    Article  Google Scholar 

  15. Zaza F, Frangini S, Leoncini J, Luisetto I, Masci A, Pasquali M, Tuti S (2014) Temperature-independent sensors based on perovskite-type oxides. In: AIP conference proceedings, vol 1603, pp 53–61

  16. Zaza F, Pallozzi V, Serra E, Pasquali M (2015) Combustion synthesis of LaFeO3 sensing nanomaterial. In: AIP conference proceedings, vol 1667, p 020003

  17. Zaza F, Orio G, Serra E, Caprioli F, Pasquali M (2015) Low-temperature capacitive sensor based on perovskite oxides. In: AIP conference proceedings, vol 1667, p 020004

  18. Sekhar P, Brosha E, Mukundan R, Garzon F (2010) Chemical sensors for environmental monitoring and homeland security. Electrochem Soc Interface 19(4):35–40

    Google Scholar 

  19. Hulanicki A, Glab S, Ingman F (1991) Chemical sensors definitions and classification. Pure Appl Chem 63(9):1247–1250

    Article  Google Scholar 

  20. Capone S, Forleo A, Francioso L, Rella R, Siciliano P, Spadavecchia J, Presicce D, Taurino A (2003) Solid state gas sensors: state of the art and future activities. J Optoelectron Adv Mater 5(5):1335–1348

    Google Scholar 

  21. Batzill M, Diebold U (2005) The surface and materials science of tin oxide. Prog Surf Sci 79(2–4):47–154

    Article  Google Scholar 

  22. Barsan N, Schweizer-Berberich M, Gopel W (1999) Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report. Fresenius J Anal Chem 365(4):287–304

    Article  Google Scholar 

  23. Gopel W, Schierbaum K (1995) SnO2 sensors: current status and future prospects. Sens Actuators B 26(1–3):1–12

    Article  Google Scholar 

  24. Orton J, Powell M (1980) The hall effect in polycrystalline and powdered semiconductors. Rep Prog Phys 43(11):1263–1307

    Article  Google Scholar 

  25. Rothschild A, Komem Y (2004) The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors. J Appl Phys 95(11I):6374–6380

    Article  Google Scholar 

  26. Kim I-D, Rothschild A, Tuller H (2013) Advances and new directions in gas-sensing devices. Acta Mater 61(3):974–1000

    Article  Google Scholar 

  27. Korotcenkov G (2007) Metal oxides for solid-state gas sensors: what determines our choice? Mater Sci Eng B 139(1):1–23

    Article  Google Scholar 

  28. Kajale D, Patil G, Gaikwad V, Shinde S, Chavan D, Pawar N, Shirsath S, Jain G (2012) Synthesis of SrTiO3 nanopowder by sol–gel-hydrothemal method for gas sensing application. Int J Smart Sens Intell Syst 5(2):382–400

    Google Scholar 

  29. Biskupski D, Geupel A, Wiesner K, Fleischer M, Moos R (2009) Platform for a hydrocarbon exhaust gas sensor utilizing a pumping cell and a conductometric sensor. Sensors 9(9):7498

    Article  Google Scholar 

  30. Inoue T, Seki N, Kamimae J-I, Eguchi K, Arai H (1991) The conduction mechanism and defect structure of acceptor- and donor-doped SrTiO3. Solid State Ion 48(3–4):283–288

    Article  Google Scholar 

  31. Korotcenkov G (2005) Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches. Sens Actuators B 107(1 SPEC.ISS):209–232

    Article  Google Scholar 

  32. Mukasyan A, Epstein P, Dinka P (2007) Solution combustion synthesis of nanomaterials. In: Proceedings of the combustion institute, vol 31(II), pp 1789–1795

  33. Sutka A, Mezinskis G (2012) Sol–gel auto-combustion synthesis of spinel-type ferrite nanomaterials. Front Mater Sci 6(2):128–141

    Article  Google Scholar 

  34. Lundstedt T, Seifert E, Abramo L, Thelin B, Nystrm A, Pettersen J, Bergman R (1998) Experimental design and optimization. Chemom Intell Lab Syst 42(1–2):3–40

    Article  Google Scholar 

  35. Martell A, Smith R (1977) Other Organic Ligands. Critical stability constants, vol 3. Springer, New York, p 495

    Google Scholar 

  36. Dean J (1999) Lange’s handbook of chemistry. McGraw-Hill, New york

    Google Scholar 

  37. Lide D (2005) Handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  38. Martell A, Smith R (1976) Inorganic complexes. Critical stability constants, vol 4. Springer, New York

    Google Scholar 

  39. Collins JM, Uppal R, Incarvito CD, Valentine AM (2005) Titanium(IV) citrate speciation and structure under environmentally and biologically relevant conditions. Inorg Chem 44(10):3431–3440

    Article  Google Scholar 

  40. Jin-Ho C, Yang-Su H, Seung-Wan S (1994) Preparation and magnetic properties of ultrafine SrFe12O19 particles derived from a metal citrate complex. Mater Lett 19(56):257–262

    Article  Google Scholar 

  41. Barbooti MM, Al-Sammerrai DA (1986) Thermal decomposition of citric acid. Thermochim Acta 98:119–126

    Article  Google Scholar 

  42. Vajargah SH, Hosseini HM, Nemati Z (2006) Synthesis of nanocrystalline yttrium iron garnets by solgel combustion process: the inuence of pH of precursor solution. Mater Sci Eng B 129(13):211–215

    Article  Google Scholar 

  43. Mali A, Ataie A (2005) Inuence of Fe/Ba molar ratio on the characteristics of Ba-hexaferrite particles prepared by solgel combustion method. J Alloy Compd 399(12):245–250

    Article  Google Scholar 

  44. Hong Y, Ho C, Hsu H, Liu C (2004) J Magn Magn Mater 279(23):401–410

    Article  Google Scholar 

  45. Guo X, Ravi B, Devi P, Hanson J, Margolies J, Gambino R, Parise J, Sampath S (2005) Synthesis of yttrium iron garnet (YIG) by citratenitrate gel combustion and precursor plasma spray processes. J Magn Magn Mater 295(2):145–154

    Article  Google Scholar 

  46. Roy S, Sigmund W, Aldinger F (1999) Nanostructured yttria powders via gel combustion. J Mater Res 14:1524–1531

    Article  Google Scholar 

  47. Glassman I, Yetter R (2008) Combustion. Academic Press, San Diego

    Google Scholar 

  48. Smith K, Smoot L, Fletcher T, Pugmire R (1994) The structure and reaction processes of coal. Springer, New York

    Book  Google Scholar 

  49. Law C (2006) Combustion Physics. Cambridge University Press, New York

    Book  Google Scholar 

  50. Goldschmidt VM (1926) Die gesetze der krystallochemie. Naturwissenschaften 14(21):477–485

    Article  Google Scholar 

  51. Pielaszek R, Lojkowski W, Matysiak H, Wejrzanowski T, Opalinska A, Fedyk R, Burjan A, Proykova A, Iliev H (2006) Chapter 5: Characterisation of particle size in nanopowders and bulk nanocrystalline materials. In: Lojkowski W, Turan R, Proykova A, Daniszewska A (eds) Nanometrology. European Nanotechnology Gateway, Eight Nanoforum Report. http://nanoparticles.org/pdf/nanometrology.pdf

  52. Lehrbuch E (1912) Chemische technologie in einzeldarstellungen. Springer, New York

    Google Scholar 

  53. Stokes A, Wilson A (1944) The diffraction of X rays by distorted crystal aggregates. In: Proceedings of the physical society 56(3) pp 174–181

  54. Williamson G, Hall W (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1(1):22–31

    Article  Google Scholar 

  55. Abraham C, Joseph R, Nattamai B (eds) (2009) Principles and applications of powder diffraction. Wiley, Weinheim

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the ENEA Research Centre and La Sapienza University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Zaza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaza, F., Orio, G. & Serra, E. Quality by design approach for SrTiO3 perovskite nanomaterials synthesis. J Mater Sci 51, 9649–9668 (2016). https://doi.org/10.1007/s10853-016-0198-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0198-8

Keywords

Navigation