Advertisement

Journal of Materials Science

, Volume 51, Issue 21, pp 9649–9668 | Cite as

Quality by design approach for SrTiO3 perovskite nanomaterials synthesis

  • Fabio Zaza
  • Giovanna Orio
  • Emanuele Serra
Original Paper

Abstract

The current environmental and energy concerns at global level drive toward politics of sustainable development for a green economy growth. In this scenario, chemical sensors play an important role in regulating energetic, ecological, and productive efficiency because of their excellent potential to develop technology for online gas emissions monitoring and feedback system control. Since sensor performances are affected by size, morphology, crystalline structure, and stoichiometry of the sensing materials, the aim of this work is to study how the synthesis conditions affect the properties of sensing nanoparticles of strontium titanate perovskite oxide and develop mathematical models with predictive ability for the design of materials. The investigated ranges of operating conditions were pH levels from 2 to 12; CA/NO3 molar ratio from 0.09 to 0.17; CA/M molar ratio from 0.63 to 2.00, where CA, NO3, and M terms are related to citric acid, nitrate ions, and the total metals, including strontium and titanium. The results confirm that fuel-to-oxidizer molar ratio of the initial solution affects the properties of the synthesized nanopowder because of its significant effects on flame temperature, burning rate, and reaction time. Depending on the synthesis conditions, the crystallite size changes from 10 to 30 nm and the grain size from 20 to 50 nm. From reacting solution with stoichiometric amounts of fuels and oxidizers, it was obtained more crystalline, pure, and nanosized perovskite oxide powder. In addition, the solution acidity and the complexing agent amount affects the dissolution of metal ions, reflecting upon the homogeneity of the dried gel and the characteristics of the final products in turn. Finally, a quality by design approach, using multiple regression analysis, was successfully used to study the combustion synthesis process by defining the direct and indirect effects of pH, CA/NO3, and CA/M on synthesized nanomaterial properties.

Keywords

Citric Acid Perovskite Ignition Temperature Flame Temperature Combustion Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to express their gratitude to the ENEA Research Centre and La Sapienza University.

References

  1. 1.
    Deptula A, Milkowska M, Lada W, Olczak T, Wawszczak D, Smolinski T, Brykala M, Chmielewski A, Zaza F, Goretta K (2012) Vitrification of nuclear wastes by complex sol–gel process. Adv Mater Res 518–523:3216–3220CrossRefGoogle Scholar
  2. 2.
    Smolinski T, Deptula A, Olczak T, Lada W, Brykala M, Wojtowicz P, Wawszczak D, Rogowski M, Zaza F (2014) Perovskite synthesis via complex 26 sol–gel process to immobilize radioactive waste elements. J Radio Nucl Chem 299(1):675–680CrossRefGoogle Scholar
  3. 3.
    Frangini S, Masci A, McPhail S, Soccio T, Zaza F (2014) Degradation behavior of a commercial 13Cr ferritic stainless steel (SS405) exposed to an ambient air atmosphere for IT-SOFC interconnect applications. Mater Chem Phys 144(3):491–497CrossRefGoogle Scholar
  4. 4.
    Zaza F, Pasquali M, Simonetti E, Paoletti C, Dell’Era A (2013) Innovative nanomaterials for fuel cells fed with biogas. Nuovo Cimento Soc Ital Fis C 36(2):73–81Google Scholar
  5. 5.
    Devianto H, Simonetti E, McPhail S, Zaza F, Cigolotti V, Paoletti C, Moreno A, La Barbera A, Luisetto I (2012) Electrochemical impedance study of the poisoning behaviour of Ni-based anodes at low concentrations of H2S in an MCFC. Int J Hydrog Energy 37(24):19312–19318CrossRefGoogle Scholar
  6. 6.
    Frangini S, Zaza F, Masci A (2012) Molten carbonate corrosion of a 13-Cr ferritic stainless steel protected by a perovskite conversion treatment: relationship with the coating microstructure and formation mechanism. Corros Sci 62:136–146CrossRefGoogle Scholar
  7. 7.
    Frangini S, Masci A, Zaza F (2011) Molten salt synthesis of perovskite conversion coatings: a novel approach for corrosion protection of stainless steels in molten carbonate fuel cells. Corros Sci 53(8):2539–2548CrossRefGoogle Scholar
  8. 8.
    Zaza F, Paoletti C, Lopresti R, Simonetti E, Pasquali M (2011) Multiple regression analysis of hydrogen sulphide poisoning in molten carbonate fuel cells used for waste-to-energy conversions. Int J Hydrog Energy 36(13):8119–8125CrossRefGoogle Scholar
  9. 9.
    Pozio A, Cemmi A, Carewska M, Paoletti C, Zaza F (2010) Characterization of gas diffusion electrodes for polymer electrolyte fuel cells. J Fuel Cell Sci Technol 7(4):0410031–0410037CrossRefGoogle Scholar
  10. 10.
    Zaza F, Paoletti C, LoPresti R, Simonetti E, Pasquali M (2010) Studies on sulfur poisoning and development of advanced anodic materials for waste-to-energy fuel cells applications. J Power Sources 195(13):4043–4050CrossRefGoogle Scholar
  11. 11.
    Ciccoli R, Cigolotti V, Lo Presti R, Massi E, McPhail S, Monteleone G, Moreno A, Naticchioni V, Paoletti C, Simonetti E, Zaza F (2010) Molten carbonate fuel cells fed with biogas: combating H2S. Waste Manag 30(6):1018–1024CrossRefGoogle Scholar
  12. 12.
    Paoletti C, Zaza F, Carewska M, LoPresti R, Simonetti E (2010) Performance study of nickel covered by lithium cobaltite cathode for molten carbonate fuel cells: a comparison in Li/K and Li/Na carbonate melts. J Fuel Cell Sci Technol 7(2):0210081–0210085CrossRefGoogle Scholar
  13. 13.
    Paoletti C, Carewska M, Presti R, Phail S, Simonetti E, Zaza F (2009) Performance analysis of new cathode materials for molten carbonate fuel cells. J Power Sources 193(1):292–297CrossRefGoogle Scholar
  14. 14.
    Pozio A, Zaza F, Masci A, Silva R (2008) Bipolar plate materials for PEMFCs: a conductivity and stability study. J Power Sources 179(2):631–639CrossRefGoogle Scholar
  15. 15.
    Zaza F, Frangini S, Leoncini J, Luisetto I, Masci A, Pasquali M, Tuti S (2014) Temperature-independent sensors based on perovskite-type oxides. In: AIP conference proceedings, vol 1603, pp 53–61Google Scholar
  16. 16.
    Zaza F, Pallozzi V, Serra E, Pasquali M (2015) Combustion synthesis of LaFeO3 sensing nanomaterial. In: AIP conference proceedings, vol 1667, p 020003Google Scholar
  17. 17.
    Zaza F, Orio G, Serra E, Caprioli F, Pasquali M (2015) Low-temperature capacitive sensor based on perovskite oxides. In: AIP conference proceedings, vol 1667, p 020004Google Scholar
  18. 18.
    Sekhar P, Brosha E, Mukundan R, Garzon F (2010) Chemical sensors for environmental monitoring and homeland security. Electrochem Soc Interface 19(4):35–40Google Scholar
  19. 19.
    Hulanicki A, Glab S, Ingman F (1991) Chemical sensors definitions and classification. Pure Appl Chem 63(9):1247–1250CrossRefGoogle Scholar
  20. 20.
    Capone S, Forleo A, Francioso L, Rella R, Siciliano P, Spadavecchia J, Presicce D, Taurino A (2003) Solid state gas sensors: state of the art and future activities. J Optoelectron Adv Mater 5(5):1335–1348Google Scholar
  21. 21.
    Batzill M, Diebold U (2005) The surface and materials science of tin oxide. Prog Surf Sci 79(2–4):47–154CrossRefGoogle Scholar
  22. 22.
    Barsan N, Schweizer-Berberich M, Gopel W (1999) Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report. Fresenius J Anal Chem 365(4):287–304CrossRefGoogle Scholar
  23. 23.
    Gopel W, Schierbaum K (1995) SnO2 sensors: current status and future prospects. Sens Actuators B 26(1–3):1–12CrossRefGoogle Scholar
  24. 24.
    Orton J, Powell M (1980) The hall effect in polycrystalline and powdered semiconductors. Rep Prog Phys 43(11):1263–1307CrossRefGoogle Scholar
  25. 25.
    Rothschild A, Komem Y (2004) The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors. J Appl Phys 95(11I):6374–6380CrossRefGoogle Scholar
  26. 26.
    Kim I-D, Rothschild A, Tuller H (2013) Advances and new directions in gas-sensing devices. Acta Mater 61(3):974–1000CrossRefGoogle Scholar
  27. 27.
    Korotcenkov G (2007) Metal oxides for solid-state gas sensors: what determines our choice? Mater Sci Eng B 139(1):1–23CrossRefGoogle Scholar
  28. 28.
    Kajale D, Patil G, Gaikwad V, Shinde S, Chavan D, Pawar N, Shirsath S, Jain G (2012) Synthesis of SrTiO3 nanopowder by sol–gel-hydrothemal method for gas sensing application. Int J Smart Sens Intell Syst 5(2):382–400Google Scholar
  29. 29.
    Biskupski D, Geupel A, Wiesner K, Fleischer M, Moos R (2009) Platform for a hydrocarbon exhaust gas sensor utilizing a pumping cell and a conductometric sensor. Sensors 9(9):7498CrossRefGoogle Scholar
  30. 30.
    Inoue T, Seki N, Kamimae J-I, Eguchi K, Arai H (1991) The conduction mechanism and defect structure of acceptor- and donor-doped SrTiO3. Solid State Ion 48(3–4):283–288CrossRefGoogle Scholar
  31. 31.
    Korotcenkov G (2005) Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches. Sens Actuators B 107(1 SPEC.ISS):209–232CrossRefGoogle Scholar
  32. 32.
    Mukasyan A, Epstein P, Dinka P (2007) Solution combustion synthesis of nanomaterials. In: Proceedings of the combustion institute, vol 31(II), pp 1789–1795Google Scholar
  33. 33.
    Sutka A, Mezinskis G (2012) Sol–gel auto-combustion synthesis of spinel-type ferrite nanomaterials. Front Mater Sci 6(2):128–141CrossRefGoogle Scholar
  34. 34.
    Lundstedt T, Seifert E, Abramo L, Thelin B, Nystrm A, Pettersen J, Bergman R (1998) Experimental design and optimization. Chemom Intell Lab Syst 42(1–2):3–40CrossRefGoogle Scholar
  35. 35.
    Martell A, Smith R (1977) Other Organic Ligands. Critical stability constants, vol 3. Springer, New York, p 495Google Scholar
  36. 36.
    Dean J (1999) Lange’s handbook of chemistry. McGraw-Hill, New yorkGoogle Scholar
  37. 37.
    Lide D (2005) Handbook of chemistry and physics. CRC Press, Boca RatonGoogle Scholar
  38. 38.
    Martell A, Smith R (1976) Inorganic complexes. Critical stability constants, vol 4. Springer, New YorkGoogle Scholar
  39. 39.
    Collins JM, Uppal R, Incarvito CD, Valentine AM (2005) Titanium(IV) citrate speciation and structure under environmentally and biologically relevant conditions. Inorg Chem 44(10):3431–3440CrossRefGoogle Scholar
  40. 40.
    Jin-Ho C, Yang-Su H, Seung-Wan S (1994) Preparation and magnetic properties of ultrafine SrFe12O19 particles derived from a metal citrate complex. Mater Lett 19(56):257–262CrossRefGoogle Scholar
  41. 41.
    Barbooti MM, Al-Sammerrai DA (1986) Thermal decomposition of citric acid. Thermochim Acta 98:119–126CrossRefGoogle Scholar
  42. 42.
    Vajargah SH, Hosseini HM, Nemati Z (2006) Synthesis of nanocrystalline yttrium iron garnets by solgel combustion process: the inuence of pH of precursor solution. Mater Sci Eng B 129(13):211–215CrossRefGoogle Scholar
  43. 43.
    Mali A, Ataie A (2005) Inuence of Fe/Ba molar ratio on the characteristics of Ba-hexaferrite particles prepared by solgel combustion method. J Alloy Compd 399(12):245–250CrossRefGoogle Scholar
  44. 44.
    Hong Y, Ho C, Hsu H, Liu C (2004) J Magn Magn Mater 279(23):401–410CrossRefGoogle Scholar
  45. 45.
    Guo X, Ravi B, Devi P, Hanson J, Margolies J, Gambino R, Parise J, Sampath S (2005) Synthesis of yttrium iron garnet (YIG) by citratenitrate gel combustion and precursor plasma spray processes. J Magn Magn Mater 295(2):145–154CrossRefGoogle Scholar
  46. 46.
    Roy S, Sigmund W, Aldinger F (1999) Nanostructured yttria powders via gel combustion. J Mater Res 14:1524–1531CrossRefGoogle Scholar
  47. 47.
    Glassman I, Yetter R (2008) Combustion. Academic Press, San DiegoGoogle Scholar
  48. 48.
    Smith K, Smoot L, Fletcher T, Pugmire R (1994) The structure and reaction processes of coal. Springer, New YorkCrossRefGoogle Scholar
  49. 49.
    Law C (2006) Combustion Physics. Cambridge University Press, New YorkCrossRefGoogle Scholar
  50. 50.
    Goldschmidt VM (1926) Die gesetze der krystallochemie. Naturwissenschaften 14(21):477–485CrossRefGoogle Scholar
  51. 51.
    Pielaszek R, Lojkowski W, Matysiak H, Wejrzanowski T, Opalinska A, Fedyk R, Burjan A, Proykova A, Iliev H (2006) Chapter 5: Characterisation of particle size in nanopowders and bulk nanocrystalline materials. In: Lojkowski W, Turan R, Proykova A, Daniszewska A (eds) Nanometrology. European Nanotechnology Gateway, Eight Nanoforum Report. http://nanoparticles.org/pdf/nanometrology.pdf
  52. 52.
    Lehrbuch E (1912) Chemische technologie in einzeldarstellungen. Springer, New YorkGoogle Scholar
  53. 53.
    Stokes A, Wilson A (1944) The diffraction of X rays by distorted crystal aggregates. In: Proceedings of the physical society 56(3) pp 174–181Google Scholar
  54. 54.
    Williamson G, Hall W (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1(1):22–31CrossRefGoogle Scholar
  55. 55.
    Abraham C, Joseph R, Nattamai B (eds) (2009) Principles and applications of powder diffraction. Wiley, WeinheimGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.ENEA-Casaccia Research CentreRomeItaly
  2. 2.La Sapienza UniversityRomeItaly

Personalised recommendations