Journal of Materials Science

, Volume 51, Issue 20, pp 9504–9513 | Cite as

Tunable electronic structures and magnetism in arsenene nanosheets via transition metal doping

  • Juan Du
  • Congxin Xia
  • Yipeng An
  • Tianxing Wang
  • Yu Jia
Original Paper


Based on density-functional theory, the electronic structures and magnetism of 3d transition metal (TM)-doped arsenene nanosheets are investigated by means of first-principles methods. The results show that Sc- and Co-doped arsenene nanosheets possess the nonmagnetic semiconducting properties, while Ti, Cr, and Cu substituting As atom can induce dilute magnetic semiconductor phase. Moreover, half-metal properties are induced in the V-, Mn-, Fe-, and Ni-doped arsenene nanosheets. In addition, results also show that Ti-, V-, Mn-, and Fe-doped arsenene nanosheets present ferromagnetic coupling, whereas Cr substitutional doping results in an antiferromagnetic coupling under their most stable configuration. These results indicate that TM doping can tune effectively the electronic and magnetic properties in the arsenene nanosheets.


Stable Configuration Transition Metal Atom Minority Spin Substitutional Doping Calculated Magnetic Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by the National Natural Science Foundation of China under Grant No. U1304518. The calculations are also supported by the High Performance Computing Center of Henan Normal University.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150CrossRefGoogle Scholar
  2. 2.
    Wang Q, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–712CrossRefGoogle Scholar
  3. 3.
    Xia F, Farmer DB, Lin Y, Avouris P (2010) Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett 10:715–718CrossRefGoogle Scholar
  4. 4.
    Bernardi M, Palummo M, Grossman JC (2013) Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett 13:3664–3670CrossRefGoogle Scholar
  5. 5.
    Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2014) Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8:1102–1120CrossRefGoogle Scholar
  6. 6.
    Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat photonics 4:611–622CrossRefGoogle Scholar
  7. 7.
    Li X, Yang J (2014) CrXTe3 (X = Si, Ge) nanosheets: two dimensional intrinsic ferromagnetic semiconductors. J Mater Chem C 2:7071–7076CrossRefGoogle Scholar
  8. 8.
    Mak KF, He K, Shan J, Heinz TF (2012) Control of valley polarization in monolayer MoS2 by optical helicity. Nat Nanotechnol 7:494–498CrossRefGoogle Scholar
  9. 9.
    Ma Y, Dai Y, Guo M, Niu C, Lu J, Huang B (2011) Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers. Phys Chem Chem Phys 13:15546–15553CrossRefGoogle Scholar
  10. 10.
    Zheng H, Zhang J, Yang S, Du X, Yan Y (2015) A first-principles study on the magnetic properties of nonmetal atom doped phosphorene monolayers. Phys Chem Chem Phys 17:16341–16350CrossRefGoogle Scholar
  11. 11.
    Cai L, He J, Liu Q, Yao T, Chen L, Yan W, Hu F, Jiang Y, Zhao Y, Hu T, Sun Z, Wei S (2015) Vacancy-induced ferromagnetism of MoS2 nanosheets. J Am Chem Soc 137:2622–2627CrossRefGoogle Scholar
  12. 12.
    Ataca C, Ciraci S (2010) Functionalization of BN honeycomb structure by adsorption and substitution of foreign atoms. Phys Rev B 82:165402CrossRefGoogle Scholar
  13. 13.
    Srivastava P, Hembram KPSS, Mizuseki H, Lee KR, Han SS, Kim S (2015) Tuning the electronic and magnetic properties of phosphorene by vacancies and adatoms. J Phys Chem C 119:6530–6538CrossRefGoogle Scholar
  14. 14.
    Bekaroglu E, Topsakal M, Cahangirov S, Ciraci S (2010) First-principles study of defects and adatoms in silicon carbide honeycomb structures. Phys Rev B 81:075433CrossRefGoogle Scholar
  15. 15.
    Kamal C, Ezawa M (2015) Arsenene: two-dimensional buckled and puckered honeycomb arsenic systems. Phys Rev B 91:085423CrossRefGoogle Scholar
  16. 16.
    Zhu Z, Guan J, Tománek D (2015) Strain-induced metal-semiconductor transition in monolayers and bilayers of gray arsenic: a computational study. Phys Rev B 91:161404CrossRefGoogle Scholar
  17. 17.
    Wang Y, Zhang C, Ji W, Wang P (2015) Unexpected band structure and half-metal in non-metal-doped arsenene sheet. Appl Phys Express 8:065202CrossRefGoogle Scholar
  18. 18.
    Wang Y, Ding Y (2015) Electronic structure and carrier mobilities of arsenene and antimonene nanoribbons: a first-principle study. Nanoscale Res Lett 10:1–10CrossRefGoogle Scholar
  19. 19.
    Xia C, Xue B, Wang T, Peng Y, Jia Y (2015) Interlayer coupling effects on Schottky barrier in the arsenene-graphene van der Waals heterostructures. Appl Phys Lett 107:193107CrossRefGoogle Scholar
  20. 20.
    Du J, Xia C, Wang T, Zhao X, Tan X, Wei S (2016) First-principles studies on substitutional doping by group IV and VI atoms in the two-dimensional arsenene. Appl Surf Sci 378:350–356CrossRefGoogle Scholar
  21. 21.
    Yazyev OV, Helm L (2007) Defect-induced magnetism in graphene. Phys Rev B 75:125408CrossRefGoogle Scholar
  22. 22.
    Yang J, Kim D, Hong J, Qian X (2010) Magnetism in boron nitride monolayer: adatom and vacancy defect. Surf Sci 604:1603–1607CrossRefGoogle Scholar
  23. 23.
    Lehtinen PO, Foster AS, Ayuela A, Krasheninnikov A, Nordlund K, Nieminen RM (2003) Magnetic properties and diffusion of adatoms on a graphene sheet. Phys Rev Lett 91:017202CrossRefGoogle Scholar
  24. 24.
    Cao C, Wu M, Jiang J, Cheng H (2010) Transition metal adatom and dimer adsorbed on graphene: induced magnetization and electronic structures. Phys Rev B 81:205424CrossRefGoogle Scholar
  25. 25.
    Santos EJG, Sánchez-Portal D, Ayuela A (2010) Magnetism of substitutional Co impurities in graphene: realization of single π vacancies. Phys Rev B 81:125433CrossRefGoogle Scholar
  26. 26.
    Yang K, Wu R, Shen L, Feng Y, Dai Y, Huang B (2010) Origin of d0 magnetism in II–VI and III–V semiconductors by substitutional doping at anion site. Phys Rev B 81:125211CrossRefGoogle Scholar
  27. 27.
    Ma Y, Dai Y, Guo M, Niu C, Zhu Y, Huang B (2012) Evidence of the existence of magnetism in pristine VX2 monolayers (X = S, Se) and their strain-induced tunable magnetic properties. ACS Nano 6:1695–1701CrossRefGoogle Scholar
  28. 28.
    Huang B, Yu J, Wei S (2011) Strain control of magnetism in graphene decorated by transition-metal atoms. Phys Rev B 84:075415CrossRefGoogle Scholar
  29. 29.
    Cao D, Shu H, Wu T, Jiang Z, Jiao Z, Cai M, Hu W (2016) First-principles study of the origin of magnetism induced by intrinsic defects in monolayer MoS2. Appl Surf Sci 361:199–205CrossRefGoogle Scholar
  30. 30.
    Cai Y, Ke Q, Zhang G, Zhang Y (2015) Energetics, charge transfer and magnetism of small molecules physisorbed on phosphorene. J Phys Chem C 119:3102–3110CrossRefGoogle Scholar
  31. 31.
    Khan I, Hong J (2015) Manipulation of magnetic state in phosphorene layer by non-magnetic impurity doping. New J Phys 17:023056CrossRefGoogle Scholar
  32. 32.
    Zhang S, Hu Y, Hu Z, Cai B, Zeng H (2015) Hydrogenated arsenenes as planar magnet and Dirac material. Appl Phys Lett 107:022102CrossRefGoogle Scholar
  33. 33.
    Li Z, Xu W, Yu Y, Du H, Zhen K, Wang J, Luo L, Qiu H, Yang X (2016) Monolayer hexagonal arsenene with tunable electronic structures and magnetic properties via impurity doping. J Mater Chem C 4:362–370CrossRefGoogle Scholar
  34. 34.
    Li Y, Xia C, Wang T, Tan X, Zhao X, Wei S (2016) Light adatoms influences on electronic structures of the two-dimensional arsenene nanosheets. Solid State Commun 230:6–10CrossRefGoogle Scholar
  35. 35.
    Hashmi A, Hong J (2015) Transition metal doped phosphorene: first-principles study. J Phys Chem C 119:9198–9204CrossRefGoogle Scholar
  36. 36.
    Yu W, Zhu Z, Niu C, Li C, Cho J, Jia Y (2016) Dilute magnetic semiconductor and half-Metal behaviors in 3d transition-metal doped black and blue phosphorenes: a first-principles study. Nanoscale Res Lett 11:1–9CrossRefGoogle Scholar
  37. 37.
    Zhou Y, Dong J, Wang Z, Xiao H, Gao F, Zu X (2010) Electronic and magnetic properties of metal-doped BN sheet: a first-principles study. Phys Chem Chem Phys 12:7588–7592CrossRefGoogle Scholar
  38. 38.
    Cheng Y, Zhu Z, Mi W, Guo Z, Schwingenschlogl U (2013) Prediction of two-dimensional diluted magnetic semiconductors: doped monolayer MoS2 systems. Phys Rev B 87:100401CrossRefGoogle Scholar
  39. 39.
    Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B 49:14251–14269CrossRefGoogle Scholar
  40. 40.
    Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  41. 41.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  42. 42.
    Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979CrossRefGoogle Scholar
  43. 43.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Juan Du
    • 1
  • Congxin Xia
    • 1
  • Yipeng An
    • 1
  • Tianxing Wang
    • 1
  • Yu Jia
    • 2
  1. 1.Department of PhysicsHenan Normal UniversityXinxiangChina
  2. 2.School of Physics and EngineeringZhengzhou UniversityZhengzhouChina

Personalised recommendations