Advertisement

Journal of Materials Science

, Volume 51, Issue 20, pp 9455–9471 | Cite as

Photosynthesis of poly(glycidyl methacrylate) microspheres: a component for making covalently cross-linked colloidosomes and organic/inorganic nanocomposites

  • Jianbo Tan
  • Lili Fu
  • Xuechao Zhang
  • Yuhao Bai
  • Li Zhang
Original Paper

Abstract

Herein, we report a photoinitiated RAFT dispersion polymerization for the preparation of highly monodisperse poly(glycidyl methacrylate) (PGMA) microspheres at room temperature. Fast polymerization rates were achieved, with near quantitative yields within 2 h of UV irradiation. The effect of reaction conditions (e.g., stabilizer concentration, monomer concentration and solvent composition) on particle morphologies was studied in detail. Amine-functionalized PGMA microspheres were prepared by treating PGMA microspheres with ethylene diamine (EDA) at 70 °C, and the obtained product was characterized by FT-IR and XPS. Such amine-functionalized PGMA microspheres were able to stabilize oil-in-water Pickering emulsions. Covalently cross-linked colloidosomes were formed by cross-linking primary amino groups on the particle surface using (tolylene 2,4-diisocyanate-terminated poly(propylene glycol) (PPG-TDI) as a cross-linker. Amine-functionalized PGMA microspheres were also employed as templates for the synthesis of PGMA/gold (Au) hybrid microspheres and large gold nanoplates.

Keywords

HAuCl4 Dispersion Polymerization Glycidyl Methacrylate Polymeric Microsphere Composite Microsphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant 21504017), Guangdong Natural Science Foundation (Grant 2016A030310339), and the Innovation Project of Education Department in Guangdong (Grant 2015KTSCX029).

Compliance with ethical standard

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2016_190_MOESM1_ESM.pdf (1.3 mb)
Additional SEM and TEM images of PGMA microspheres and PGMA/Au composite microspheres (PDF 1375 kb)

References

  1. 1.
    Kawaguchi H (2000) Functional polymer microspheres. Prog Polym Sci 25:1171–1210. doi: 10.1016/S0079-6700(00)00024-1 CrossRefGoogle Scholar
  2. 2.
    Deng Z, Zhu H, Peng B et al (2012) Synthesis of PS/Ag nanocomposite spheres with catalytic and antibacterial activities. ACS Appl Mater Interfaces 4:5625–5632. doi: 10.1021/am3015313 CrossRefGoogle Scholar
  3. 3.
    Abdelrahman AI, Dai S, Thickett SC et al (2009) Lanthanide-containing polymer microspheres by multiple-stage dispersion polymerization for highly multiplexed bioassays. J Am Chem Soc 131:15276–15283. doi: 10.1021/ja9052009 CrossRefGoogle Scholar
  4. 4.
    Thompson KL, Williams M, Armes SP (2015) Colloidosomes: synthesis, properties and applications. J Colloid Interface Sci 447:217–228. doi: 10.1016/j.jcis.2014.11.058 CrossRefGoogle Scholar
  5. 5.
    Přikryl P, Horák D, Tichá M, Kučerová Z (2006) Magnetic IDA-modified hydrophilic methacrylate-based polymer microspheres for IMAC protein separation. J Sep Sci 29:2541–2549. doi: 10.1002/jssc.200600248 CrossRefGoogle Scholar
  6. 6.
    Zhang Y, Li D, Yu M et al (2014) Fe3O4/PVIM-Ni2+ magnetic composite microspheres for highly specific separation of histidine-rich proteins. ACS Appl Mater Interfaces 6:8836–8844. doi: 10.1021/am501626t CrossRefGoogle Scholar
  7. 7.
    Bradford EB, Vanderhoff JW (1955) Electron microscopy of monodisperse latexes. J Appl Phys 26:864–871. doi: 10.1063/1.1722111 CrossRefGoogle Scholar
  8. 8.
    Ugelstad J, Kaggerud KH, Hansen FK, Berge A (1979) Absorption of low molecular weight compounds in aqueous dispersions of polymer-oligomer particles, 2. A two step swelling process of polymer particles giving an enormous increase in absorption capacity. Makromol Chem 180:737–744. doi: 10.1002/macp.1979.021800317 CrossRefGoogle Scholar
  9. 9.
    Kawaguchi S, Ito K (2005) Dispersion polymerization. In: Okubo M (ed) Polym Part. Springer, Berlin, pp 299–328Google Scholar
  10. 10.
    Yagci Y, Jockusch S, Turro NJ (2010) Photoinitiated polymerization: advances, challenges, and opportunities. Macromolecules 43:6245–6260. doi: 10.1021/ma1007545 CrossRefGoogle Scholar
  11. 11.
    Dadashi-Silab S, Doran S, Yagci Y (2016) photoinduced electron transfer reactions for macromolecular syntheses. Chem Rev. doi: 10.1021/acs.chemrev.5b00586 Google Scholar
  12. 12.
    Zhou H, Johnson JA (2013) Photo-controlled growth of telechelic polymers and end-linked polymer gels. Angew Chem Int Ed 52:2235–2238. doi: 10.1002/anie.201207966 CrossRefGoogle Scholar
  13. 13.
    Discekici EH, Pester CW, Treat NJ et al (2016) simple benchtop approach to polymer brush nanostructures using visible-light-mediated metal-free atom transfer radical polymerization. ACS Macro Lett 5:258–262. doi: 10.1021/acsmacrolett.6b00004 CrossRefGoogle Scholar
  14. 14.
    Shanmugam S, Boyer C (2015) Stereo-, temporal and chemical control through photoactivation of living radical polymerization: synthesis of block and gradient copolymers. J Am Chem Soc 137:9988–9999. doi: 10.1021/jacs.5b05903 CrossRefGoogle Scholar
  15. 15.
    Poelma JE, Fors BP, Meyers GF et al (2013) Fabrication of complex three-dimensional polymer brush nanostructures through light-mediated living radical polymerization. Angew Chem Int Ed 52:6844–6848. doi: 10.1002/anie.201301845 CrossRefGoogle Scholar
  16. 16.
    Xu J, Jung K, Corrigan NA, Boyer C (2014) Aqueous photoinduced living/controlled polymerization: tailoring for bioconjugation. Chem Sci 5:3568–3575. doi: 10.1039/C4SC01309C CrossRefGoogle Scholar
  17. 17.
    Tan J, Sun H, Yu M et al (2015) Photo-PISA: shedding light on polymerization-induced self-assembly. ACS Macro Lett 4:1249–1253. doi: 10.1021/acsmacrolett.5b00748 CrossRefGoogle Scholar
  18. 18.
    Tan J, Bai Y, Zhang X, Zhang L (2016) Room temperature synthesis of poly(poly(ethylene glycol) methyl ether methacrylate)-based diblock copolymer nano-objects via photoinitiated polymerization-induced self-assembly (Photo-PISA). Polym Chem 7:2372–2380. doi: 10.1039/C6PY00022C CrossRefGoogle Scholar
  19. 19.
    Jiang Y, Xu N, Han J et al (2015) The direct synthesis of interface-decorated reactive block copolymer nanoparticles via polymerisation-induced self-assembly. Polym Chem 6:4955–4965. doi: 10.1039/C5PY00656B CrossRefGoogle Scholar
  20. 20.
    Shim SE, Jung H, Lee H et al (2003) Living radical dispersion photopolymerization of styrene by a reversible addition–fragmentation chain transfer (RAFT) agent. Polymer 44:5563–5572. doi: 10.1016/S0032-3861(03)00632-3 CrossRefGoogle Scholar
  21. 21.
    Ki B, Yu YC, Jeon HJ et al (2012) Dispersion polymerization of styrene using poly(4-vinylpyridine) macro-RAFT agent under UV radiation. Fibers Polym 13:135–138. doi: 10.1007/s12221-012-0135-7 CrossRefGoogle Scholar
  22. 22.
    Chen J, Zeng Z, Yang J, Chen Y (2008) Photoinitiated dispersion polymerization of methyl methacrylate: a quick approach to prepare polymer microspheres with narrow size distribution. J Polym Sci Part Polym Chem 46:1329–1338. doi: 10.1002/pola.22473 CrossRefGoogle Scholar
  23. 23.
    Tan J, Rao X, Wu X et al (2012) Photoinitiated RAFT dispersion polymerization: a straightforward approach toward highly monodisperse functional microspheres. Macromolecules 45:8790–8795. doi: 10.1021/ma301799r CrossRefGoogle Scholar
  24. 24.
    Tan J, Rao X, Jiang D et al (2014) One-stage photoinitiated RAFT dispersion polymerization—reaction parameters for achieving high particle size uniformity. Polymer 55:2380–2388. doi: 10.1016/j.polymer.2014.04.006 CrossRefGoogle Scholar
  25. 25.
    Gorzynski Smith J (1984) Synthetically useful reactions of epoxides. Synthesis 1984:629–656. doi: 10.1055/s-1984-30921 CrossRefGoogle Scholar
  26. 26.
    McLeod DC, Tsarevsky NV (2016) Well-defined epoxide-containing styrenic polymers and their functionalization with alcohols. J Polym Sci Part Polym Chem 54:1132–1144. doi: 10.1002/pola.27952 CrossRefGoogle Scholar
  27. 27.
    Abdelrahman AI, Thickett SC, Liang Y et al (2011) Surface functionalization methods to enhance bioconjugation in metal-labeled polystyrene particles. Macromolecules 44:4801–4813. doi: 10.1021/ma200582q CrossRefGoogle Scholar
  28. 28.
    Brändle A, Khan A (2012) Thiol–epoxy “click” polymerization: efficient construction of reactive and functional polymers. Polym Chem 3:3224–3227. doi: 10.1039/C2PY20591B CrossRefGoogle Scholar
  29. 29.
    Oh JS, Dang LN, Yoon SW et al (2013) Amine-functionalized polyglycidyl methacrylate microsphere as a unified template for the synthesis of gold nanoparticles and single-crystal gold plates. Macromol Rapid Commun 34:504–510. doi: 10.1002/marc.201200713 CrossRefGoogle Scholar
  30. 30.
    Horák D, Španová A, Tvrdíková J, Rittich B (2011) Streptavidin-modified magnetic poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) microspheres for selective isolation of bacterial DNA. Eur Polym J 47:1090–1096. doi: 10.1016/j.eurpolymj.2011.02.007 CrossRefGoogle Scholar
  31. 31.
    Zhang W, Sun Y, Zhang L (2015) In situ synthesis of monodisperse silver nanoparticles on sulfhydryl-functionalized poly(glycidyl methacrylate) microspheres for catalytic reduction of 4-nitrophenol. Ind Eng Chem Res 54:6480–6488. doi: 10.1021/acs.iecr.5b01010 CrossRefGoogle Scholar
  32. 32.
    Du Y-Z, Kodaka M (2005) Preparation and characterization of biotinylated and enzyme-immobilized heterobifunctional latex particles as nanobio devices. J Polym Sci Part Polym Chem 43:562–574. doi: 10.1002/pola.20556 CrossRefGoogle Scholar
  33. 33.
    Lai JT, Filla D, Shea R (2002) Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient raft agents. Macromolecules 35:6754–6756. doi: 10.1021/ma020362m CrossRefGoogle Scholar
  34. 34.
    Song J-S, Tronc F, Winnik MA (2004) Two-stage dispersion polymerization toward monodisperse, controlled micrometer-sized copolymer particles. J Am Chem Soc 126:6562–6563. doi: 10.1021/ja048862d CrossRefGoogle Scholar
  35. 35.
    Song J-S, Winnik MA (2005) Cross-linked, monodisperse, micron-sized polystyrene particles by two-stage dispersion polymerization. Macromolecules 38:8300–8307. doi: 10.1021/ma050992z CrossRefGoogle Scholar
  36. 36.
    Tan J, Rao X, Yang J, Zeng Z (2015) Monodisperse highly cross-linked “living” microspheres prepared via photoinitiated RAFT dispersion polymerization. RSC Adv 5:18922–18931. doi: 10.1039/C4RA15224G CrossRefGoogle Scholar
  37. 37.
    Liu G, Qiu Q, Shen W, An Z (2011) Aqueous dispersion polymerization of 2-methoxyethyl acrylate for the synthesis of biocompatible nanoparticles using a hydrophilic raft polymer and a redox initiator. Macromolecules 44:5237–5245. doi: 10.1021/ma200984h CrossRefGoogle Scholar
  38. 38.
    Zhou W, Qu Q, Yu W, An Z (2014) Single monomer for multiple tasks: polymerization induced self-assembly, functionalization and cross-linking, and nanoparticle loading. ACS Macro Lett 3:1220–1224. doi: 10.1021/mz500650c CrossRefGoogle Scholar
  39. 39.
    Warren NJ, Armes SP (2014) Polymerization-induced self-assembly of block copolymer nano-objects via raft aqueous dispersion polymerization. J Am Chem Soc 136:10174–10185. doi: 10.1021/ja502843f CrossRefGoogle Scholar
  40. 40.
    Blanazs A, Madsen J, Battaglia G et al (2011) Mechanistic insights for block copolymer morphologies: how do worms form vesicles? J Am Chem Soc 133:16581–16587. doi: 10.1021/ja206301a CrossRefGoogle Scholar
  41. 41.
    He W-D, Sun X-L, Wan W-M, Pan C-Y (2011) Multiple morphologies of PAA-b-PSt assemblies throughout raft dispersion polymerization of styrene with PAA Macro-CTA. Macromolecules 44:3358–3365. doi: 10.1021/ma2000674 CrossRefGoogle Scholar
  42. 42.
    Huang C-Q, Pan C-Y (2010) Direct preparation of vesicles from one-pot RAFT dispersion polymerization. Polymer 51:5115–5121. doi: 10.1016/j.polymer.2010.08.056 CrossRefGoogle Scholar
  43. 43.
    Sun J-T, Hong C-Y, Pan C-Y (2013) Recent advances in RAFT dispersion polymerization for preparation of block copolymer aggregates. Polym Chem 4:873–881. doi: 10.1039/C2PY20612A CrossRefGoogle Scholar
  44. 44.
    Huo F, Li S, Li Q et al (2014) In-situ synthesis of multicompartment nanoparticles of linear BAC triblock terpolymer by seeded raft polymerization. Macromolecules 47:2340–2349. doi: 10.1021/ma5002386 CrossRefGoogle Scholar
  45. 45.
    Huo F, Gao C, Dan M et al (2014) Seeded dispersion RAFT polymerization and synthesis of well-defined ABA triblock copolymer flower-like nanoparticles. Polym Chem 5:2736–2746. doi: 10.1039/C3PY01569F CrossRefGoogle Scholar
  46. 46.
    Pei Y, Thurairajah L, Sugita OR, Lowe AB (2015) RAFT dispersion polymerization in nonpolar media: polymerization of 3-phenylpropyl methacrylate in n-Tetradecane with poly(stearyl methacrylate) homopolymers as macro chain transfer agents. Macromolecules 48:236–244. doi: 10.1021/ma502230h CrossRefGoogle Scholar
  47. 47.
    Song J-S, Winnik MA (2006) Monodisperse, micron-sized reactive low molar mass polymer microspheres by two-stage living radical dispersion polymerization of styrene. Macromolecules 39:8318–8325. doi: 10.1021/ma061321j CrossRefGoogle Scholar
  48. 48.
    Saikia PJ, Lee JM, Lee K, Choe S (2008) Reaction parameters in the RAFT mediated dispersion polymerization of styrene. J Polym Sci Part Polym Chem 46:872–885. doi: 10.1002/pola.22431 CrossRefGoogle Scholar
  49. 49.
    Tan J, Rao X, Yang J, Zeng Z (2013) Synthesis of highly monodisperse surface-functional microspheres by photoinitiated raft dispersion polymerization using macro-raft agents. Macromolecules 46:8441–8448. doi: 10.1021/ma401909a CrossRefGoogle Scholar
  50. 50.
    Tan J, Zhao G, Lu Y et al (2014) Synthesis of PMMA microparticles with a narrow size distribution by photoinitiated raft dispersion polymerization with a macromonomer as the stabilizer. Macromolecules 47:6856–6866. doi: 10.1021/ma501432s CrossRefGoogle Scholar
  51. 51.
    Medina-Castillo AL, Fernandez-Sanchez JF, Segura-Carretero A, Fernandez-Gutierrez A (2010) Micrometer and submicrometer particles prepared by precipitation polymerization: thermodynamic model and experimental evidence of the relation between flory’s parameter and particle size. Macromolecules 43:5804–5813. doi: 10.1021/ma100841c CrossRefGoogle Scholar
  52. 52.
    Paine AJ (1990) Dispersion polymerization of styrene in polar solvents. 7. A simple mechanistic model to predict particle size. Macromolecules 23:3109–3117. doi: 10.1021/ma00214a013 CrossRefGoogle Scholar
  53. 53.
    McKee JR, Ladmiral V, Niskanen J et al (2011) Synthesis of sterically-stabilized polystyrene latexes using well-defined thermoresponsive poly(N-isopropylacrylamide) macromonomers. Macromolecules 44:7692–7703. doi: 10.1021/ma2016584 CrossRefGoogle Scholar
  54. 54.
    Tan J, Wu B, Yang J et al (2010) Photoinitiated dispersion polymerization using polyurethane based macrophotoinitiator as stabilizer and photoinitiator. Polymer 51:3394–3401. doi: 10.1016/j.polymer.2010.05.052 CrossRefGoogle Scholar
  55. 55.
    Ali AMI, Pareek P, Sewell L et al (2007) Synthesis of poly(2-hydroxypropyl methacrylate) latex particles via aqueous dispersion polymerization. Soft Matter 3:1003–1013. doi: 10.1039/B704425A CrossRefGoogle Scholar
  56. 56.
    Thompson KL, Chambon P, Verber R, Armes SP (2012) Can polymersomes form colloidosomes? J Am Chem Soc 134:12450–12453. doi: 10.1021/ja305789e CrossRefGoogle Scholar
  57. 57.
    Thompson KL, Armes SP, Howse JR et al (2010) Covalently cross-linked colloidosomes. Macromolecules 43:10466–10474. doi: 10.1021/ma102499k CrossRefGoogle Scholar
  58. 58.
    Chen Y, Wang C, Chen J et al (2009) Growth of lightly crosslinked PHEMA brushes and capsule formation using pickering emulsion interface-initiated ATRP. J Polym Sci Part Polym Chem 47:1354–1367. doi: 10.1002/pola.23244 CrossRefGoogle Scholar
  59. 59.
    Cayre OJ, Biggs S (2009) Hollow microspheres with binary porous membranes from solid-stabilised emulsion templates. J Mater Chem 19:2724–2728. doi: 10.1039/B820842E CrossRefGoogle Scholar
  60. 60.
    Chen T, Colver PJ, Bon SAF (2007) Organic-inorganic hybrid hollow spheres prepared from TiO2-stabilized pickering emulsion polymerization. Adv Mater 19:2286–2289. doi: 10.1002/adma.200602447 CrossRefGoogle Scholar
  61. 61.
    Tan J, Peng Y, Liu D et al (2016) Facile preparation of monodisperse poly(2-hydroxyethyl acrylate)-grafted poly(methyl methacrylate) microspheres via photoinitiated RAFT dispersion polymerization. Macromol Chem Phys. doi: 10.1002/macp.201600176 Google Scholar
  62. 62.
    Fielding LA, Tonnar J, Armes SP (2011) All-acrylic film-forming colloidal polymer/silica nanocomposite particles prepared by aqueous emulsion polymerization. Langmuir 27:11129–11144. doi: 10.1021/la202066n CrossRefGoogle Scholar
  63. 63.
    Gao R, Zhou S, Chen M, Wu L (2011) Facile synthesis of monodisperse meso-microporous Ta3N5 hollow spheres and their visible light-driven photocatalytic activity. J Mater Chem 21:17087–17090. doi: 10.1039/C1JM13756E CrossRefGoogle Scholar
  64. 64.
    Tan J, Yu M, Rao X et al (2015) Fast and facile one-step synthesis of monodisperse thermo-responsive core–shell microspheres and applications. Polym Chem 6:6698–6708. doi: 10.1039/C5PY00889A CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Polymeric Materials and Engineering, School of Materials and EnergyGuangdong University of TechnologyGuangzhouChina
  2. 2.Guangdong Provincial Key Laboratory of Functional Soft Condensed MatterGuangzhouChina

Personalised recommendations