Journal of Materials Science

, Volume 51, Issue 21, pp 9625–9637 | Cite as

Facile synthesis and characterization of poly(levodopa)-modified silica nanocomposites via self-polymerization of levodopa and their adsorption behavior toward Cu2+

  • Qiang Huang
  • Meiying Liu
  • Ren Guo
  • Liucheng Mao
  • Qing Wan
  • Guangjian Zeng
  • Hongye Huang
  • Fengjie Deng
  • Xiaoyong Zhang
  • Yen Wei
Original Paper


In this study, a facile surface functionalization method was applied to synthesize poly-levodopa (PDOPA)-modified silica nanocomposites (denoted as SiO2-PDOPA). The adsorption capacity of SiO2-PDOPA was found to be higher than that of unmodified SiO2 NPs. The successful preparation of SiO2-PDOPA was confirmed by Fourier transform infrared spectroscopy, transmission electron microscopy, and thermo gravimetric analysis. The adsorption behavior was investigated using SiO2-PDOPA as adsorbents and Cu2+ as a model heavy metal pollutant. Various adsorption parameters, including contact time, solution pH, temperature, and initial Cu2+ concentrations were studied. The results showed that pH could markedly affect the adsorption process of SiO2-PDOPA to Cu2+. The optimum pH for Cu2+ adsorption was found to be 7.0. The adsorption kinetic data were analyzed using pseudofirst-order, pseudosecond-order, and intraparticle diffusion models. The adsorption isotherms could be described by Langmuir and Freundlich isotherm models. The fitting results showed that the adsorption kinetics and isotherms were better described by the pseudosecond-order and Langmuir model, respectively. The values of thermodynamics constants, including entropy change (ΔS 0 ), enthalpy change (ΔH 0 ), and Gibbs free energy (ΔG 0 ) were determined at different temperatures. Results suggested that the adsorption process of SiO2-PDOPA to Cu2+ is a feasible, endothermic, and spontaneous process.


Adsorption Capacity Levodopa Dopa Intraparticle Diffusion SiO2 Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by the National Natural Science Foundation of China (Nos. 51363016, 21474057, 21564006, 21561022) and the National 973 Project (Nos. 2011CB935700).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10853_2016_178_MOESM1_ESM.docx (250 kb)
Supplementary material 1 (DOCX 249 kb)


  1. 1.
    Kampalanonwat P, Supaphol P (2010) Preparation and adsorption behavior of aminated electrospun polyacrylonitrile nanofiber mats for heavy metal ion removal. ACS Appl Mater Inter 2:3619CrossRefGoogle Scholar
  2. 2.
    Jorgetto A, Silva R, Saeki M, Barbosa R, Martines M, Jorge S, Silva A, Schneider J, Castro G (2014) Cassava root husks powder as green adsorbent for the removal of Cu (II) from natural river water. Appl Surf Sci 288:356CrossRefGoogle Scholar
  3. 3.
    Meng Y, Chen D, Sun Y, Jiao D, Zeng D, Liu Z (2015) Adsorption of Cu 2+ ions using chitosan-modified magnetic Mn ferrite nanoparticles synthesized by microwave-assisted hydrothermal method. Appl Surf Sci 324:745CrossRefGoogle Scholar
  4. 4.
    Rao MM, Rao GC, Seshaiah K, Choudary N, Wang M (2008) Activated carbon from Ceiba pentandra hulls, an agricultural waste, as an adsorbent in the removal of lead and zinc from aqueous solutions. Waste Manage 28:849CrossRefGoogle Scholar
  5. 5.
    H. M. Albishri, H. M. Marwani, M. G. Batterjee and E. M. Soliman, Eriochrome Blue Black modified activated carbon as solid phase extractor for removal of Pb(II) ions from water samples. Arab J Chem (2013)Google Scholar
  6. 6.
    Papageorgiou SK, Katsaros F, Kouvelos E, Kanellopoulos N (2009) Prediction of binary adsorption isotherms of Cu2+, Cd2+ and Pb2+ on calcium alginate beads from single adsorption data. J Hazard Mater 162:1347CrossRefGoogle Scholar
  7. 7.
    Chen C, Wang X (2006) Adsorption of Ni (II) from aqueous solution using oxidized multiwall carbon nanotubes. Ind Eng Chem Res 45:9144CrossRefGoogle Scholar
  8. 8.
    Hu J, Chen C, Zhu X, Wang X (2009) Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes. J Hazard Mater 162:1542CrossRefGoogle Scholar
  9. 9.
    Sun S, Wang A (2006) Adsorption properties of carboxymethyl-chitosan and cross-linked carboxymethyl-chitosan resin with Cu (II) as template. Sep Purif Technol 49:197CrossRefGoogle Scholar
  10. 10.
    Qiu H, Zhang S, Pan B, Zhang W, Lv L (2012) Effect of sulfate on Cu (II) sorption to polymer-supported nano-iron oxides: behavior and XPS study. J Colloid Interf Sci 366:37CrossRefGoogle Scholar
  11. 11.
    Ren Y, Wei X, Zhang M (2008) Adsorption character for removal Cu (II) by magnetic Cu (II) ion imprinted composite adsorbent. J Hazard Mater 158:14CrossRefGoogle Scholar
  12. 12.
    Jiang W, Wang W, Pan B, Zhang Q, Zhang W, Lv L (2014) Facile fabrication of magnetic chitosan beads of fast kinetics and high capacity for copper removal. ACS Appl Mater Inter 6:3421CrossRefGoogle Scholar
  13. 13.
    Zhang X, Huang Q, Liu M, Tian J, Zeng G, Li Z, Wang K, Zhang Q, Wan Q, Deng F (2015) Preparation of amine functionalized carbon nanotubes via a bioinspired strategy and their application in Cu2+ removal. Appl Surf Sci 343:19CrossRefGoogle Scholar
  14. 14.
    Tao X, Wang X, Li Z, Zhou S (2015) Ultralow temperature synthesis and improved adsorption performance of graphene oxide nanosheets. Appl Surf Sci 324:363CrossRefGoogle Scholar
  15. 15.
    Tian J, Zhang H, Liu M, Deng F, Huang H, Wan Q, Li Z, Wang K, He X, Zhang X (2015) A bioinspired strategy for surface modification of silica nanoparticles. Appl Surf Sci 357:1996CrossRefGoogle Scholar
  16. 16.
    Wan Q, Tian J, Liu M, Zeng G, Huang Q, Wang K, Zhang Q, Deng F, Zhang X, Wei Y (2015) Surface modification of carbon nanotubes via combination of mussel inspired chemistry and chain transfer free radical polymerization. Appl Surf Sci 346:335CrossRefGoogle Scholar
  17. 17.
    Wu X-Q, Wu X-W, Huang Q, Shen J-S, Zhang H-W (2015) In situ synthesized gold nanoparticles in hydrogels for catalytic reduction of nitroaromatic compounds. Appl Surf Sci 331:210CrossRefGoogle Scholar
  18. 18.
    Kołodyńska D, Kowalczyk M, Hubicki Z (2014) Evaluation of iron-based hybrid materials for heavy metal ions removal. J Mater Sci 49:2483CrossRefGoogle Scholar
  19. 19.
    Lei Y, Chen F, Luo Y, Zhang L (2014) Three-dimensional magnetic graphene oxide foam/Fe3O4 nanocomposite as an efficient absorbent for Cr(VI) removal. J Mater Sci 49:4236CrossRefGoogle Scholar
  20. 20.
    Li Y, Xiao H, Chen M, Song Z, Zhao Y (2014) Absorbents based on maleic anhydride-modified cellulose fibers/diatomite for dye removal. J Mater Sci 49:6696CrossRefGoogle Scholar
  21. 21.
    Liu X, Zhou Y, Nie W, Song L, Chen P (2015) Fabrication of hydrogel of hydroxypropyl cellulose (HPC) composited with graphene oxide and its application for methylene blue removal. J Mater Sci 50:6113CrossRefGoogle Scholar
  22. 22.
    Parmar KR, Patel I, Basha S, Murthy Z (2014) Synthesis of acetone reduced graphene oxide/Fe3O4 composite through simple and efficient chemical reduction of exfoliated graphene oxide for removal of dye from aqueous solution. J Mater Sci 49:6772CrossRefGoogle Scholar
  23. 23.
    Singaravel GP, Hashaikeh R (2016) Fabrication of electrospun LTL zeolite fibers and their application for dye removal. J Mater Sci 51:1133CrossRefGoogle Scholar
  24. 24.
    Tang H, Zhou W, Lu A, Zhang L (2014) Characterization of new sorbent constructed from Fe3O4/chitin magnetic beads for the dynamic adsorption of Cd2 + ions. J Mater Sci 49:123CrossRefGoogle Scholar
  25. 25.
    Zhang Q, Wang N, Zhao L, Xu T, Cheng Y (2013) Polyamidoamine dendronized hollow fiber membranes in the recovery of heavy metal ions. ACS Appl Mater Inter 5:1907CrossRefGoogle Scholar
  26. 26.
    Hunsom M, Pruksathorn K, Damronglerd S, Vergnes H, Duverneuil P (2005) Electrochemical treatment of heavy metals (Cu2+, Cr6+, Ni2+) from industrial effluent and modeling of copper reduction. Water Res 39:610CrossRefGoogle Scholar
  27. 27.
    Janin A, Zaviska F, Drogui P, Blais J-F, Mercier G (2009) Selective recovery of metals in leachate from chromated copper arsenate treated wastes using electrochemical technology and chemical precipitation. Hydrometallurgy 96:318CrossRefGoogle Scholar
  28. 28.
    Al Aji B, Yavuz Y, Koparal AS (2012) Electrocoagulation of heavy metals containing model wastewater using monopolar iron electrodes. Sep Purif Technol 86:248CrossRefGoogle Scholar
  29. 29.
    Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92:407CrossRefGoogle Scholar
  30. 30.
    Liu M, Ji J, Zhang X, Zhang X, Yang B, Deng F, Li Z, Wang K, Yang Y, Wei Y (2015) Self-polymerization of dopamine and polyethyleneimine: novel fluorescent organic nanoprobes for biological imaging applications. J. Mater. Chem. B 3:3476CrossRefGoogle Scholar
  31. 31.
    Xie Y, He C, Liu L, Mao L, Wang K, Huang Q, Liu M, Wan Q, Deng F, Huang H (2015) Carbon nanotube based polymer nanocomposites: biomimic preparation and organic dye adsorption applications. RSC Adv 5:82503CrossRefGoogle Scholar
  32. 32.
    Xie Y, Huang Q, Liu M, Wang K, Wan Q, Deng F, Lu L, Zhang X, Wei Y (2015) Mussel inspired functionalization of carbon nanotubes for heavy metal ion removal. RSC Adv. 5:68430CrossRefGoogle Scholar
  33. 33.
    Zhang X, Huang Q, Liu M, Tian J, Zeng G, Li Z, Wang K, Zhang Q, Wan Q, Deng F (2015) Preparation of amine functionalized carbon nanotubes via a bioinspired strategy and their application in Cu2+ removal. Appl Surf Sci 343:19CrossRefGoogle Scholar
  34. 34.
    Huang Q, Liu M, Chen J, Wang K, Xu D, Deng F, Huang H, Zhang X, Wei Y (2016) Enhanced removal capability of kaolin toward methylene blue by mussel-inspired functionalization. J Mater Sci. doi: 10.1007/s10853 Google Scholar
  35. 35.
    Heng C, Liu M, Wang K, Deng F, Huang H, Wan Q, Hui J, Zhang X, Wei Y (2015) Biomimic preparation of highly dispersible silica nanoparticles based polymer nanocomposites. Ceram Int 41:15075CrossRefGoogle Scholar
  36. 36.
    Aguado J, Arsuaga JM, Arencibia A (2008) Influence of synthesis conditions on mercury adsorption capacity of propylthiol functionalized SBA-15 obtained by co-condensation. Micropor Mesopor Mat 109:513CrossRefGoogle Scholar
  37. 37.
    Aguado J, Arsuaga JM, Arencibia A, Lindo M, Gascón V (2009) Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica. J Hazard Mater 163:213CrossRefGoogle Scholar
  38. 38.
    Guo J, Yang W, Wang C, He J, Chen J (2006) Poly (N-isopropylacrylamide)-coated luminescent/magnetic silica microspheres: preparation, characterization, and biomedical applications. Chem Mater 18:5554CrossRefGoogle Scholar
  39. 39.
    Kumar GP, Kumar PA, Chakraborty S, Ray M (2007) Uptake and desorption of copper ion using functionalized polymer coated silica gel in aqueous environment. Sep Purif Technol 57:47CrossRefGoogle Scholar
  40. 40.
    Xue X, Li F (2008) Removal of Cu (II) from aqueous solution by adsorption onto functionalized SBA-16 mesoporous silica. Micropor Mesopor Mat 116:116CrossRefGoogle Scholar
  41. 41.
    Liu J, Ma S, Zang L (2013) Preparation and characterization of ammonium-functionalized silica nanoparticle as a new adsorbent to remove methyl orange from aqueous solution. Appl Surf Sci 265:393CrossRefGoogle Scholar
  42. 42.
    Ghoul M, Bacquet M, Morcellet M (2003) Uptake of heavy metals from synthetic aqueous solutions using modified PEI—silica gels. Water Res 37:729CrossRefGoogle Scholar
  43. 43.
    Yantasee W, Rutledge RD, Chouyyok W, Sukwarotwat V, Orr G, Warner CL, Warner MG, Fryxell GE, Wiacek RJ, Timchalk C (2010) Functionalized nanoporous silica for the removal of heavy metals from biological systems: adsorption and application. ACS Appl Mater Inter 2:2749CrossRefGoogle Scholar
  44. 44.
    Qu Q, Gu Q, Gu Z, Shen Y, Wang C, Hu X (2012) Efficient removal of heavy metal from aqueous solution by sulfonic acid functionalized nonporous silica microspheres. Colloid Surface A 415:41CrossRefGoogle Scholar
  45. 45.
    Elkady M, Abu-Saied M, Rahman AA, Soliman E, Elzatahry A, Yossef ME, Eldin MM (2011) Nano-sulphonated poly (glycidyl methacrylate) cations exchanger for cadmium ions removal: effects of operating parameters. Desalination 279:152CrossRefGoogle Scholar
  46. 46.
    Cheng C, Nie S, Li S, Peng H, Yang H, Ma L, Sun S, Zhao C (2013) Biopolymer functionalized reduced graphene oxide with enhanced biocompatibility via mussel inspired coatings/anchors. J Mater Chem B 1:265CrossRefGoogle Scholar
  47. 47.
    Zhang X, Zeng G, Tian J, Wan Q, Huang Q, Wang K, Zhang Q, Liu M, Deng F, Wei Y (2015) PEGylation of carbon nanotubes via mussel inspired chemistry: preparation, characterization and biocompatibility evaluation. Appl Surf Sci 351:425CrossRefGoogle Scholar
  48. 48.
    Waite JH (1990) The phylogeny and chemical diversity of quinone-tanned glues and varnishes. Comp Biochem Phys B 97:19Google Scholar
  49. 49.
    Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426CrossRefGoogle Scholar
  50. 50.
    Ryou MH, Lee YM, Park JK, Choi JW (2011) Mussel inspired polydopamine treated polyethylene separators for high power li ion batteries. Adv Mater 23:3066CrossRefGoogle Scholar
  51. 51.
    S. Kim, J. M. Moon, J. S. Choi, W. K. Cho and S. M. Kang, Mussel ispired approach to constructing robust multilayered alginate films for antibacterial applicationns. Adv Funct Mater (2016)Google Scholar
  52. 52.
    Gao H, Sun Y, Zhou J, Xu R, Duan H (2013) Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification. ACS Appl Mater Inter 5:425CrossRefGoogle Scholar
  53. 53.
    B. Yu, D. A. Wang, Q. Ye, F. Zhou and W. Liu, Robust polydopamine nano/microcapsules and their loading and release behavior. Chem. Commum. (2009) 6789Google Scholar
  54. 54.
    Xie Y, Huang Q, Liu M, Wang K, Wan Q, Deng F, Lu L, Zhang X, Wei Y (2015) Mussel inspired functionalization of carbon nanotubes for heavy metal ion removal. RSC Adv 5:68430CrossRefGoogle Scholar
  55. 55.
    Wan Q, Tian J, Liu M, Zeng G, Huang Q, Wang K, Zhang Q, Deng F, Zhang X, Wei Y (2015) Surface modification of carbon nanotubes via combination of mussel inspired chemistry and chain transfer free radical polymerization. Appl Surf Sci 346:335CrossRefGoogle Scholar
  56. 56.
    Zhang X, Ji J, Zhang X, Yang B, Liu M, Liu W, Tao L, Chen Y, Wei Y (2013) Mussel inspired modification of carbon nanotubes using RAFT derived stimuli-responsive polymers. RSC Adv 3:21817CrossRefGoogle Scholar
  57. 57.
    Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interf Sci 26:62CrossRefGoogle Scholar
  58. 58.
    Lu L, Capek R, Kornowski A, Gaponik N, Eychmüller A (2005) Selective fabrication of ordered bimetallic nanostructures with hierarchical porosity. Angew Chem Int Edit 44:5997CrossRefGoogle Scholar
  59. 59.
    Wang W, Gu B, Liang L, Hamilton W (2003) Fabrication of two-and three-dimensional silica nanocolloidal particle arrays. J Phys Chem B 107:3400CrossRefGoogle Scholar
  60. 60.
    Zhang T, Zhang Q, Ge J, Goebl J, Sun M, Yan Y, Liu Y-S, Chang C, Guo J, Yin Y (2009) A self-templated route to hollow silica microspheres. J Phys Chem C 113:3168CrossRefGoogle Scholar
  61. 61.
    Zhang L, Xia W, Liu X, Zhang W (2015) Synthesis of titanium cross-linked chitosan composite for efficient adsorption and detoxification of hexavalent chromium from water. J. Mater. Chem. A 3:331CrossRefGoogle Scholar
  62. 62.
    Wahab R, Khan F, Rashid M, Kaushik N, Shin H-S (2014) Quantitative determination of raw and functionalized carbon nanotubes for the antibacterial studies. J Mater Sci 49:4288CrossRefGoogle Scholar
  63. 63.
    Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanitary Eng Div 89:31Google Scholar
  64. 64.
    Shi Y, Kong X, Zhang C, Chen Y, Hua Y (2013) Adsorption of soy isoflavones by activated carbon: kinetics, thermodynamics and influence of soy oligosaccharides. Chem Eng J 215:113CrossRefGoogle Scholar
  65. 65.
    Rauf M, Bukallah S, Hamour F, Nasir A (2008) Adsorption of dyes from aqueous solutions onto sand and their kinetic behavior. Chem Eng J 137:238CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Qiang Huang
    • 1
  • Meiying Liu
    • 1
  • Ren Guo
    • 1
  • Liucheng Mao
    • 1
  • Qing Wan
    • 1
  • Guangjian Zeng
    • 1
  • Hongye Huang
    • 1
  • Fengjie Deng
    • 1
  • Xiaoyong Zhang
    • 1
  • Yen Wei
    • 2
  1. 1.Department of Chemistry Nanchang UniversityNanchangChina
  2. 2.Department of Chemistry and the Tsinghua Center for Frontier Polymer ResearchTsinghua UniversityBeijingChina

Personalised recommendations