Journal of Materials Science

, Volume 51, Issue 19, pp 9057–9073 | Cite as

Incorporation of epoxy resin and carbon nanotube into silica/siloxane network for improving thermal properties

  • Saeid Najafi-Shoa
  • Hossein Roghani-Mamaqani
  • Mehdi Salami-Kalajahi
  • Reza Azimi
  • Meysam Gholipour-Mahmoudalilou
Original Paper


Thermal properties of epoxy resin (E) were improved by its incorporation into silica/siloxane network in the presence of carbon nanotube (CNT). At first, CNT xerogel (CNTX)/E composite was prepared by curing E in the presence of CNTX. Then, E is modified with (3-isocyanatopropyl)triethoxysilane (IE) or tetraethyl orthosilicate (TEOS) oligomer (TE) for its incorporation into a hybrid network of CNT-containing silica/siloxane network. For this purpose, a bifunctional modifier of 1,1′-(hexane-1,6-diyl)bis(3-(3-(trimethoxysilyl)propyl)urea) (HDBTMSPU) was synthesized. CNTX was prepared by incorporation of HDBTMSPU-modified CNT (FCNT) into silica/siloxane network by using HDBTMSPU and TEOS. IE (TE), FGO, HDBTMSPU, and TEOS were also used in the preparation of hybrid products. Three types of composites were compared in their thermal degradation temperature and char content. Functionalization of CNT was confirmed by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, Raman, X-ray diffraction (XRD), and thermogravimetric analysis (TGA) results. Xerogel formation was proved by Raman, XRD, and N2 adsorption and desorption isotherms. TGA results showed that the hybrid of IE, FCNT, and silica/siloxane network shows higher thermal properties. Char residue is increased 17.54 % by only 4 wt% loading of FCNT in IE resin (IEGX1). Formation of xerogel network around CNT was observed by scanning and transmission electron microscopies.


Epoxy Matrix Char Residue Radial Breathing Mode HMDI Hexamethylene Diisocyanate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



National Elites Foundation is greatly appreciated for its financial support (Grant Number: 15/76508).


  1. 1.
    Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136CrossRefGoogle Scholar
  2. 2.
    Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205CrossRefGoogle Scholar
  3. 3.
    Hu CY, Xu YJ, Duo SW, Zhang RF, Li MS (2009) Non-covalent functionalization of carbon nanotubes with surfactants and polymers. J Chin Chem Soc 56:234–239CrossRefGoogle Scholar
  4. 4.
    Rahimi-Razin S, Haddadi-Asl V, Salami-Kalajahi M, Behboodi-Sadabad F, Roghani-Mamaqani H (2012) Properties of matrix-grafted multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposites synthesized by in situ reversible addition-fragmentation chain transfer polymerization. J Iran Chem Soc 9:877–887CrossRefGoogle Scholar
  5. 5.
    Salami-Kalajahi M, Haddadi-Asl V, Behboodi-Sadabad F, Rahimi-Razin S, Roghani-Mamaqani H, Hemmati M (2012) Effect of carbon nanotubes on the kinetics of in situ polymerization of methyl methacrylate. NANO 7:1250003CrossRefGoogle Scholar
  6. 6.
    Salami-Kalajahi M, Haddadi-Asl V, Behboodi-Sadabad F, Rahimi-Razin S, Roghani-Mamaqani H (2012) Properties of PMMA/carbon nanotubes nanocomposites prepared by “grafting through” method. Polym Compos 33:215–224CrossRefGoogle Scholar
  7. 7.
    Roghani-Mamaqani H, Haddadi-Asl V, Ghaderi-Ghahfarrokhi M, Sobhkhiz Z (2014) Reverse atom transfer radical polymerization of methyl methacrylate in the presence of Azo-functionalized carbon nanotubes: a grafting from approach. Colloid Polym Sci 292:2971–2981CrossRefGoogle Scholar
  8. 8.
    Noparvar-Qarebagh A, Roghani-Mamaqani H, Salami-Kalajahi M (2015) Functionalization of carbon nanotubes by furfuryl alcohol moieties for preparation of novolac phenolic resin composites with high carbon yield values. Colloid Polym Sci 293:3623–3631CrossRefGoogle Scholar
  9. 9.
    Rahimi-Razin S, Haddadi-Asl V, Salami-Kalajahi M, Behboodi-Sadabad F, Roghani-Mamaqani H (2012) Matrix grafted multi-walled carbon nanotubes/poly(methyl methacrylate) nanocomposites synthesized by in situ RAFT polymerization: a kinetics study. Int J Chem Kinet 44:555–569CrossRefGoogle Scholar
  10. 10.
    Thomas R, Yumei D, Yuelong H, Le Y, Moldenaers P, Weimin Y, Czigany T, Thomasf S (2008) Miscibility, morphology, thermal, and mechanical properties of a DGEBA based epoxy resin toughened with a liquid rubber. Polymer 49:278–294CrossRefGoogle Scholar
  11. 11.
    Meeks AC (1974) Fracture and mechanical properties of epoxy resins and rubber-modified epoxy resins. Polymer 15:675–681CrossRefGoogle Scholar
  12. 12.
    Levchik SV, Weil ED (2004) Thermal decomposition, combustion and flame-retardancy of epoxy resins review of the recent literature. Polym Int 53(12):1901–1929CrossRefGoogle Scholar
  13. 13.
    Levchik SV, Piotrowski A, Weil ED, Yao Q (2005) New developments in flame retardancy of epoxy resins. Polym Degrad Stabil 88:57–62CrossRefGoogle Scholar
  14. 14.
    Wang JS, Liu Y, Zhao HB, Liu J, Wang DY, Song YP, Wang YZ (2009) Metal compound enhanced flame retardancy of intumescent epoxy resins containing ammonium polyphosphate. Polym Degrad Stabil 94(4):625–631CrossRefGoogle Scholar
  15. 15.
    Dogana M, Unlu SM (2014) Flame retardant effect of boron compounds on red phosphorus containing epoxy resins. Polym Degrad Stabil 99:12–17CrossRefGoogle Scholar
  16. 16.
    Perrin FX, Chaoui N, Margaillan A (2009) Effects of octa (3-chloroammoniumpropyl)octasilsesquioxane on the epoxy self-polymerisation and epoxy–amine curing. Thermochim Acta 491:97–102CrossRefGoogle Scholar
  17. 17.
    Chiang CL, Chang RC, Chiu YC (2007) Thermal stability and degradation kinetics of novel organic/inorganic epoxy hybrid containing nitrogen/silicon/phosphorus by sol-gel method. Thermochim Acta 453:97–104CrossRefGoogle Scholar
  18. 18.
    Yang SY, Lin WN, Huang YL, Tien HW, Wang JY, Ma CCM, Li SM, Wang YS (2011) Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon 49:793–803CrossRefGoogle Scholar
  19. 19.
    Kuan CF, Chen WJ, Li YL, Chen CH, Kuan HC, Chiang CL (2010) Flame retardance and thermal stability of carbon nanotube epoxy composite prepared from sol–gel method. J Phys Chem Solids 71:539–543CrossRefGoogle Scholar
  20. 20.
    Hrubesh LW (1990) Aerogels: the world’s lightest solids. Chem Ind 24:824–827Google Scholar
  21. 21.
    Sobani M, Haddadi-Asl V, Salami-Kalajahi M, Roghani-Mamaqani H, Mirshafiei-Langari SA, Khezri K (2013) Grafting through approach for synthesis of polystyrene/silica aerogel nanocomposites by in situ reversible addition-fragmentation chain transfer polymerization. J Sol-Gel Sci Technol 66:337–344CrossRefGoogle Scholar
  22. 22.
    Siouffi AM (2003) Silica gel-based monoliths prepared by the sol–gel method: facts and figures. J Chromatogr A 1000:801–818CrossRefGoogle Scholar
  23. 23.
    Kajihara K (2013) Recent advances in sol–gel synthesis of monolithic silica and silica-based glasses. J Asian Ceramic Soc 1:121–133CrossRefGoogle Scholar
  24. 24.
    Sobani M, Haddadi-Asl V, Mirshafiei-Langari SA, Salami-Kalajahi M, Roghani-Mamaqani H, Khezri K (2014) A kinetics study on the in situ reversible addition-fragmentation chain transfer and free radical polymerization of styrene in presence of silica aerogel nanoporous particles. Des Monom Polym 17:245–254CrossRefGoogle Scholar
  25. 25.
    Mirshafiei-Langari SA, Haddadi-Asl V, Roghani-Mamaqani H, Sobani M, Khezri K (2013) Synthesis of hybrid free and nanoporous silica aerogel-anchored polystyrene chains via in situ atom transfer radical polymerization. Polym Compos 34:1648–1654CrossRefGoogle Scholar
  26. 26.
    Wen FJ, Wilkes GL (1996) Organic/inorganic hybrid network materials by the sol–gel approach. Chem Mater 8:1667–1681CrossRefGoogle Scholar
  27. 27.
    Wu SY, Yuen SM, Ma CCM, Chiang CL, Huang YL, Wu H, Teng CC, Yang CC, Wei MH (2010) Preparation, morphology, and properties of silane-modified MWCNT/epoxy composites. J Appl Polym Sci 115:3481–3488CrossRefGoogle Scholar
  28. 28.
    Wu SY, Yuen SM, Ma CCM, Huang YL, Teng CC (2011) Molecular motion, morphology and properties of 3-isocyanato-propyltriethoxysilane-modified multi-walled carbon nanotube/epoxy composites. Micro Nano Lett 6(6):463–467CrossRefGoogle Scholar
  29. 29.
    Noparvar-Qarebagh A, Roghani-Mamaqani H, Salami-Kalajahi M (2016) Organic-inorganic nanohybrids of novolac phenolic resin and carbon nanotube: high carbon yields by using carbon nanotube aerogel and resin incorporation into aerogel network. Micropor Mesopor Mater 224:58–67CrossRefGoogle Scholar
  30. 30.
    Noparvar-Qarebagh A, Roghani-Mamaqani H, Salami-Kalajahi M (2016) Novolac phenolic resin and graphene aerogel organic-inorganic nanohybrids: high carbon yields by resin modification and its incorporation into aerogel network. Polym Degrad Stabil 124:1–14CrossRefGoogle Scholar
  31. 31.
    Wang X, Xing W, Song L, Yang H, Hu Y, Yeoh GH (2012) Fabrication and characterization of graphene-reinforced waterborne polyurethane nanocomposite coatings by the sol–gel method. Surf Coat Technol 206:4778–4784CrossRefGoogle Scholar
  32. 32.
    Wu HL, Yang YT, Ma CCM, Kuan HC (2005) Molecular mobility of free-radical-functionalized carbon-nanotube/siloxane/poly(urea urethane) nanocomposites. J Polym Sci A Polym Chem 43:6084–6094CrossRefGoogle Scholar
  33. 33.
    Qian X, Song L, Hu Y, Yuen RKK (2013) Thermal degradation and flammability of novel organic/inorganic epoxy hybrids containing organophosphorus-modified oligosiloxane. Thermochim Acta 552:87–97CrossRefGoogle Scholar
  34. 34.
    Qian X, Song L, Yu B, Wang B, Yuan B, Shi Y, Hu Y, Yuen RKK (2013) Novel organic–inorganic flame retardants containing exfoliated graphene: preparation and their performance on the flame retardancy of epoxy resins. J Mater Chem A 1:6822–6830CrossRefGoogle Scholar
  35. 35.
    Hu S, Xu Y, Jiang D, Wu D, Sun Y, Deng F (2009) Moisture-resistant protective films for UV-light filter based on diisocyanate-bridged polysilsesquioxanes. Thin Solid Films 518:348–354CrossRefGoogle Scholar
  36. 36.
    Rosca ID, Watari F, Uo M, Akasaka T (2005) Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon 43:3124–3131CrossRefGoogle Scholar
  37. 37.
    Roghani-Mamaqani H, Hadadi-Asl V (2014) In-plane functionalizing graphene nanolayers with polystyrene by atom transfer radical polymerization: grafting from hydroxyl group. Polym Compos 10:386–395CrossRefGoogle Scholar
  38. 38.
    Roghani-Mamaqani H, Haddadi-Asl V, Khezri K, Zeinali E, Salami-Kalajahi M (2014) In situ atom transfer radical polymerization of styrene to in-plane functionalize graphene nanolayers: grafting through hydroxyl groups. J Polym Res 21:333–344CrossRefGoogle Scholar
  39. 39.
    Yang H, Li F, Shan C, Han D, Zhang Q, Niu L, Ivaska A (2009) Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J Mater Chem 19:4632–4638CrossRefGoogle Scholar
  40. 40.
    Wan YJ, Tang LC, Gong LX, Yan D, Li YB, Wu LB, Jiang JX, Lai GQ (2014) Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon 69:467–480CrossRefGoogle Scholar
  41. 41.
    Chiang CL, Ma CCM (2002) Synthesis, characterization and thermal properties of novel epoxy containing silicon and phosphorus nanocomposites by sol–gel method. Europ Polym J 38:2219–2224CrossRefGoogle Scholar
  42. 42.
    Alyamac E, Gua H, Soucek MD, Qiub S, Buchheit RG (2012) Alkoxysilane oligomer modified epoxide primers. Prog Organ Coat 74:67–81CrossRefGoogle Scholar
  43. 43.
    Roghani-Mamaqani H (2015) Surface-initiated ATRP of styrene from epoxy groups of graphene nanolayers: twofold polystyrene chains and various graft densities. RSC Adv 5:53357–53368CrossRefGoogle Scholar
  44. 44.
    Roghani-Mamaqani H, Haddadi-Asl V, Mortezaei M, Khezri K (2014) Furfuryl alcohol functionalized graphene nanosheets for synthesis of high carbon yield novolak composites. J Appl Polym Sci 131:40273CrossRefGoogle Scholar
  45. 45.
    Roghani-Mamaqani H, Haddadi-Asl V, Khezri K, Salami-Kalajahi M (2014) Edge-functionalized graphene nanoplatelets with polystyrene by atom transfer radical polymerization: grafting through carboxyl groups. Polym Int 63:1912–1923CrossRefGoogle Scholar
  46. 46.
    Roghani-Mamaqani H, Haddadi-Asl V, Sobhkhiz Z, Ghaderi-Ghahfarrokhi M (2015) Grafting poly (methyl methacrylate) from azo-functionalized graphene nanolayers via reverse atom transfer radical polymerization. Colloid Polym Sci 293:735–750CrossRefGoogle Scholar
  47. 47.
    Wang Z, Wei P, Qian Y, Liu J (2014) The synthesis of a novel graphene-based inorganic–organic hybrid flame retardant and its application in epoxy resin. Compos B 60:341–349CrossRefGoogle Scholar
  48. 48.
    George GA, Clarke PC, Jhon NS, Friend G (1991) Real time monitoring of the cure reaction of a TGDDM/DDS epoxy resin using fiber optic FT-IR. J Appl Polym Sci 42:643–657CrossRefGoogle Scholar
  49. 49.
    Nikolic G, Zlatkovic S, Cakic M, Cakic S, Lacnjevac C, Rajic Z (2010) Fast fourier transform IR characterization of epoxy GY systems crosslinked with aliphatic and cycloaliphatic EH polyamine adducts. Sensors 10:684–696CrossRefGoogle Scholar
  50. 50.
    Yu T, Jiang N, Li Y (2014) Functionalized multi-walled carbon nanotube for improving the flame retardancy of ramie/poly(lactic acid) composite. Comp Sci Tech 104:26–33CrossRefGoogle Scholar
  51. 51.
    Wu SY, Yuen SM, Ma CCM, Huang YL, Teng CC (2011) Molecular motion, morphology and properties of 3-isocyanato-propyltriethoxysilane modified multi-walled carbon nanotube/epoxy composites. Micro Nano Lett 6:463–467CrossRefGoogle Scholar
  52. 52.
    Roghani-Mamaqani H, Haddadi-Asl V, Khezri K, Salami-Kalajahi M, Najafi M (2015) Kinetic study of styrene atom transfer radical polymerization from hydroxyl groups of graphene nanoplatelets: heterogeneities in chains and graft densities. Polym Eng Sci 55:1720–1732CrossRefGoogle Scholar
  53. 53.
    Ma PC, Kim JK, Tang BZ (2006) Functionalization of carbon nanotubes using a silane coupling agent. Carbon 44:3232–3238CrossRefGoogle Scholar
  54. 54.
    Roghani-Mamaqani H, Haddadi-Asl V, Khezri K, Salami-Kalajahi M, Najafi M, Sobani M, Mirshafiei-Langari SA (2015) Confinement effect of graphene nanoplatelets on atom transfer radical polymerization of styrene: grafting through hydroxyl groups. Iran Polym J 24:51–62CrossRefGoogle Scholar
  55. 55.
    Roghani-Mamaqani H, Khezri K (2016) A grafting from approach to graft polystyrene chains to the surface of graphene nanolayers by RAFT polymerization: various graft densities from hydroxyl groups. Appl Surf Sci 360:373–382CrossRefGoogle Scholar
  56. 56.
    Dresselhaus MS, Eklund PC (2000) Phonons in carbon nanotubes. Adv Phys 49:705–814CrossRefGoogle Scholar
  57. 57.
    Jorio A, Filho AGS, Dresselhaus G, Dresselhaus MS, Swan AK, Ünlü MS, Goldberg BB, Pimenta MA, Hafner JH, Lieber CM, Saito R (2002) G-band Raman spectra of isolated single wall carbon nanotube: diameter and chirality dependence. Mat Res Soc Sympos Proc 706:Z6.19.1–6Google Scholar
  58. 58.
    Qi X, Zhai G, Liang J, Ma S, Liu X, Xu B (2014) Preparation and characterization of SiC@CNT coaxial nanocables using CNTs as a template. Cryst Eng Commun 16:9697–9703CrossRefGoogle Scholar
  59. 59.
    Li X, Chen Y, Mo S, Jia L, Shao X (2014) Effect of surface modification on the stability and thermal conductivity of water-based SiO2-coated graphene nanofluid. Thermochim Acta 595:6–10CrossRefGoogle Scholar
  60. 60.
    Yua W, Fu J, Dong X, Chen L, Shi L (2014) A graphene hybrid material functionalized with POSS: synthesis and applications in low-dielectric epoxy composites. Compos Sci Technol 92:112–119CrossRefGoogle Scholar
  61. 61.
    Lin J, Zhang P, Zheng C, Wua X, Maoa T, Zhu M, Wanga H, Feng D, Qiana S, Cai X (2014) Reduced silanized graphene oxide/epoxy-polyurethane composites with enhanced thermal and mechanical properties. Appl Surf Sci 316:114–123CrossRefGoogle Scholar
  62. 62.
    Yuen SM, Ma CCM, Chiang CL, Chang JA, Huang SW, Chen SC, Chuang CY, Yang CC, Wei MH (2007) Silane-modified MWCNT/PMMA composites preparation, electrical resistivity, thermal conductivity and thermal stability. Comp Part A 38:2527–2535CrossRefGoogle Scholar
  63. 63.
    Bao C, Guo Y, Song L, Kan Y, Qian X, Hu Y (2011) In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements. J Mater Chem 21:13290–13298CrossRefGoogle Scholar
  64. 64.
    Roghani-Mamaqani H, Haddadi-Asl V, Khezri K, Salami-Kalajahi M (2014) Polystyrene grafted graphene nanoplatelets with various graft densities by atom transfer radical polymerization from the edge carboxyl groups. RSC Adv 4:24439–24452CrossRefGoogle Scholar
  65. 65.
    Mirshafiei-Langari SA, Haddadi-Asl V, Roghani-Mamaqani H, Sobani M, Khezri K (2013) In situ atom transfer radical polymerization of styrene in the presence of nanoporous silica aerogel: kinetic study and investigation of thermal properties. J Polym Res 20:163CrossRefGoogle Scholar
  66. 66.
    Sarawade PB, Kim JK, Kim HK, Kim HT (2007) High specific surface area TEOS-based aerogels with large pore volume prepared at an ambient pressure. Appl Surf Sci 254:574–579CrossRefGoogle Scholar
  67. 67.
    Zhang X, Liu J, Xu B, Su Y, Luo Y (2011) Ultralight conducting polymer/carbon nanotube composite aerogels. Carbon 49:1884–1893CrossRefGoogle Scholar
  68. 68.
    Dong L, Yang Q, Xu C, Li Y, Yang D, Hou F, Yin H, Kang F (2015) Facile preparation of carbon nanotube aerogels with controlled hierarchical microstructures and versatile performance. Carbon 90:164–171CrossRefGoogle Scholar
  69. 69.
    Li WC, Lu AH, Schmidt W, Schüth F (2005) High surface area, mesoporous, glassy alumina with a controllable pore size by nanocasting from carbon aerogels. Chem Eur J 11:1658–1664CrossRefGoogle Scholar
  70. 70.
    Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380CrossRefGoogle Scholar
  71. 71.
    Yuan FY, Zhang HB, Li X, Ma HL, Li XZ, Yu ZZ (2014) In situ chemical reduction and functionalization of graphene oxide for electrically conductive phenol formaldehyde composites. Carbon 68:653–661CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Saeid Najafi-Shoa
    • 1
  • Hossein Roghani-Mamaqani
    • 1
    • 2
  • Mehdi Salami-Kalajahi
    • 1
    • 2
  • Reza Azimi
    • 3
  • Meysam Gholipour-Mahmoudalilou
    • 3
  1. 1.Department of Polymer EngineeringSahand University of TechnologyTabrizIran
  2. 2.Institute of Polymeric MaterialsSahand University of TechnologyTabrizIran
  3. 3.Department of Chemical EngineeringSahand University of TechnologyTabrizIran

Personalised recommendations