Journal of Materials Science

, Volume 51, Issue 19, pp 8965–8976 | Cite as

Novel hydrophilic PVDF ultrafiltration membranes based on a ZrO2–multiwalled carbon nanotube hybrid for oil/water separation

  • Xi Yang
  • Yi He
  • Guangyong Zeng
  • Yingqing Zhan
  • Yang Pan
  • Heng Shi
  • Qi Chen
Original Paper


A novel hydrophilic PVDF composite membrane based on ZrO2–multiwalled carbon nanotubes (MWCNTs) hybrid was prepared by a simple phase-inversion method. ZrO2 nanoparticles were firstly loaded on the surface of MWCNTs via hydrothermal route, which was characterized by Fourier-transform infrared, X-ray diffraction, thermogravimetric analyzer, scanning electron microscopy (SEM), and transmission electron microscopy. It was found that the ZrO2–MWCNTs hybrid formed network structures within the PVDF matrix, avoiding the aggregation of nanofillers. Then, the effects of ZrO2–MWCNTs hybrid on the performances of ultimate PVDF membrane were systematically investigated. The microstructure and surface morphology of novel membranes were observed by SEM and atomic force microscopy. The results indicated that ZrO2 were dispersed homogeneously on the surface of MWCNTs. The as-prepared membrane exhibited enhanced pure water flux and a lower contact angle than those of pure PVDF membrane. Furthermore, the as-prepared membranes processed also improved separation efficiency against oil/water emulsions and achieved better rejection ratio and good durable antifouling performance. In general, ZrO2–MWCNTs/PVDF membrane may provide a potential application against complex oil/water systems.


Contact Angle Composite Membrane Pure Water Flux ZrO2 Particle ZrO2 Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by the majorly cultivated project of sci-tech achievements transition (15CZ0005) from the education department in Sichuan Province and Youth Science and Technology Creative Group Fund of Southwest Petroleum University (2015CXTD03).


  1. 1.
    Blanco J, Malato S, Fernández-Ibañez P, Alarcón D, Gernjak W, Maldonado MI (2009) Review of feasible solar energy applications to water processes. Renew Sustain Energy Rev 13:1437–1445CrossRefGoogle Scholar
  2. 2.
    de Araki MS, de Coutinho CM, Gonçalves LAG, Viotto LA (2010) Solvent permeability in commercial ultrafiltration polymeric membranes and evaluation of the structural and chemical stability towards hexane. Sep Purif Technol 71:13–21CrossRefGoogle Scholar
  3. 3.
    Yuan T, Meng J, Hao T, Wang Z, Zhang Y (2015) A scalable method toward superhydrophilic and underwater superoleophobic pvdf membranes for effective oil/water emulsion separation. ACS Appl Mater Interfaces 7:14896–14904CrossRefGoogle Scholar
  4. 4.
    Drioli E, Macedonio F (2012) Membrane engineering for water engineering. Ind Eng Chem Res 51:10051–10056CrossRefGoogle Scholar
  5. 5.
    Francis L, Ghaffour N, Alsaadi AS, Nunes SP, Amy GL (2013) PVDF hollow fiber and nanofiber membranes for fresh water reclamation using membrane distillation. J Mater Sci 49:2045–2053. doi: 10.1007/s10853-013-7894-4 CrossRefGoogle Scholar
  6. 6.
    Qin A, Wu X, Ma B, Zhao X, He C (2014) Enhancing the antifouling property of poly(vinylidene fluoride)/SiO2 hybrid membrane through TIPS method. J Mater Sci 49:7797–7808. doi: 10.1007/s10853-014-8490-y CrossRefGoogle Scholar
  7. 7.
    Hu X, Xiao C, An S, Jia G (2007) Study on the interfacial micro-voids of poly(vinylidene difluoride)/polyurethane blend membrane. J Mater Sci 42:6234–6239. doi: 10.1007/s10853-006-1107-3 CrossRefGoogle Scholar
  8. 8.
    Ng LY, Mohammad AW, Leo CP, Hilal N (2013) Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination 308:15–33CrossRefGoogle Scholar
  9. 9.
    Wang X-M, Li X-Y, Shih K (2011) In situ embedment and growth of anhydrous and hydrated aluminum oxide particles on polyvinylidene fluoride (PVDF) membranes. J Membr Sci 368:134–143CrossRefGoogle Scholar
  10. 10.
    Yu S, Zuo X, Bao R, Xu X, Wang J, Xu J (2009) Effect of SiO2 nanoparticle addition on the characteristics of a new organic–inorganic hybrid membrane. Polymer 50:553–559CrossRefGoogle Scholar
  11. 11.
    Yu L-Y, Xu Z-L, Shen H-M, Yang H (2009) Preparation and characterization of PVDF–SiO2 composite hollow fiber UF membrane by sol–gel method. J Membr Sci 337:257–265CrossRefGoogle Scholar
  12. 12.
    Qin A, Li X, Zhao X, Liu D, He C (2015) Engineering a highly hydrophilic PVDF membrane via binding TiO2(2)nanoparticles and a pva layer onto a membrane surface. ACS Appl Mater Interfaces 7:8427–8436CrossRefGoogle Scholar
  13. 13.
    Razmjou A, Mansouri J, Chen V (2011) The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes. J Membr Sci 378:73–84CrossRefGoogle Scholar
  14. 14.
    Zhou S, Xue A, Zhang Y, Li M, Wang J, Zhao Y, Xing W (2014) Fabrication of temperature-responsive ZrO2 tubular membranes, grafted with poly (N-isopropylacrylamide) brush chains, for protein removal and easy cleaning. J Membr Sci 450:351–361CrossRefGoogle Scholar
  15. 15.
    Paiman SH, Rahman MA, Othman MHD, Ismail AF, Jaafar J, Aziz AA (2015) Morphological study of yttria-stabilized zirconia hollow fibre membrane prepared using phase inversion/sintering technique. Ceram Int 41:12543–12553CrossRefGoogle Scholar
  16. 16.
    Pang R, Li X, Li J, Lu Z, Sun X, Wang L (2014) Preparation and characterization of ZrO2/PES hybrid ultrafiltration membrane with uniform ZrO2 nanoparticles. Desalination 332:60–66CrossRefGoogle Scholar
  17. 17.
    Zheng Y-M, Zou S-W, Nanayakkara KGN, Matsuura T, Chen JP (2011) Adsorptive removal of arsenic from aqueous solution by a PVDF/zirconia blend flat sheet membrane. J Membr Sci 374:1–11CrossRefGoogle Scholar
  18. 18.
    He J, Siah TS, Paul Chen J (2014) Performance of an optimized Zr-based nanoparticle-embedded PSF blend hollow fiber membrane in treatment of fluoride contaminated water. Water Res 56:88–97CrossRefGoogle Scholar
  19. 19.
    Zhang Y, Ting JWY, Rohan R, Cai W, Li J, Xu G, Chen Z, Lin A, Cheng H (2014) Fabrication of a proton exchange membrane via blended sulfonimide functionalized polyamide. J Mater Sci 49:3442–3450. doi: 10.1007/s10853-014-8055-0 CrossRefGoogle Scholar
  20. 20.
    Li H, Zhao X, Wu P, Zhang S, Geng B (2015) Facile preparation of superhydrophobic and superoleophilic porous polymer membranes for oil/water separation from a polyarylester polydimethylsiloxane block copolymer. J Mater Sci 51:3211–3218. doi: 10.1007/s10853-015-9632-6 CrossRefGoogle Scholar
  21. 21.
    Du C-H, Zhu B-K, Xu Y-Y (2006) The effects of quenching on the phase structure of vinylidene fluoride segments in PVDF-HFP copolymer and PVDF-HFP/PMMA blends. J Mater Sci 41:417–421. doi: 10.1007/s10853-005-2182-6 CrossRefGoogle Scholar
  22. 22.
    Qiu S, Wu L, Shi G, Zhang L, Chen H, Gao C (2010) Preparation and pervaporation property of chitosan membrane with functionalized multiwalled carbon nanotubes. Ind Eng Chem Res 49:11667–11675CrossRefGoogle Scholar
  23. 23.
    Murali RS, Sridhar S, Sankarshana T, Ravikumar YVL (2010) Gas permeation behavior of Pebax-1657 nanocomposite membrane incorporated with multiwalled carbon nanotubes. Ind Eng Chem Res 49:6530–6538CrossRefGoogle Scholar
  24. 24.
    López-Lorente ÁI, Polo-Luque ML, Valcárcel M (2013) Sequential preconcentration and on-membrane raman determination of carboxylic single-walled carbon nanotubes in river water samples. Anal Chem 85:10338–10343CrossRefGoogle Scholar
  25. 25.
    Xie X, Mai Y, Zhou X (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R 49:89–112CrossRefGoogle Scholar
  26. 26.
    Vatanpour V, Madaeni SS, Moradian R, Zinadini S, Astinchap B (2012) Novel antibifouling nanofiltration polyethersulfone membrane fabricated from embedding TiO2 coated multiwalled carbon nanotubes. Sep Purif Technol 90:69–82CrossRefGoogle Scholar
  27. 27.
    Choi J-H, Jegal J, Kim W-N (2006) Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes. J Membr Sci 284:406–415CrossRefGoogle Scholar
  28. 28.
    Kraytsberg A, Ein-Eli Y (2014) Review of advanced materials for proton exchange membrane fuel cells. Energy Fuels 28:7303–7330CrossRefGoogle Scholar
  29. 29.
    Xu H-P, Lang W-Z, Yan X, Zhang X, Guo Y-J (2014) Preparation and characterizations of poly(vinylidene fluoride)/oxidized multi-wall carbon nanotube membranes with bi-continuous structure by thermally induced phase separation method. J Membr Sci 467:142–152CrossRefGoogle Scholar
  30. 30.
    Wang S, Liang S, Liang P, Zhang X, Sun J, Wu S, Huang X (2015) In-situ combined dual-layer CNT/PVDF membrane for electrically-enhanced fouling resistance. J Membr Sci 491:37–44CrossRefGoogle Scholar
  31. 31.
    Reddy ALM, Shaijumon MM, Gowda SR, Ajayan PM (2009) Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett 9:1002–1006CrossRefGoogle Scholar
  32. 32.
    Wang Z, Xia J, Xia Y, Lu C, Shi G, Zhang F, Zhu F, Li Y, Xia L, Tang J (2013) Fabrication and characterization of a zirconia/multi-walled carbon nanotube mesoporous composite. Mater Sci Eng C 33:3931–3934CrossRefGoogle Scholar
  33. 33.
    Liu F, Hashim NA, Liu Y, Abed MRM, Li K (2011) Progress in the production and modification of PVDF membranes. J Membr Sci 375:1–27CrossRefGoogle Scholar
  34. 34.
    Zeng G, He Y, Zhan Y, Zhang L, Shi H, Yu Z (2016) Preparation of a novel poly(vinylidene fluoride) ultrafiltration membrane by incorporation of 3-aminopropyltriethoxysilane-grafted halloysite nanotubes for oil/water separation. Ind Eng Chem Res 55:1760–1767CrossRefGoogle Scholar
  35. 35.
    Shi H, He Y, Pan Y, Di H, Zeng G, Zhang L, Zhang C (2016) A modified mussel-inspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation. J Membr Sci 506:60–70CrossRefGoogle Scholar
  36. 36.
    Madaeni SS, Zinadini S, Vatanpour V (2013) Preparation of superhydrophobic nanofiltration membrane by embedding multiwalled carbon nanotube and polydimethylsiloxane in pores of microfiltration membrane. Sep Purif Technol 111:98–107CrossRefGoogle Scholar
  37. 37.
    Zhou S, Xue A, Zhao Y, Li M, Wang H, Xing W (2013) Grafting polyacrylic acid brushes onto zirconia membranes: fouling reduction and easy-cleaning properties. Sep Purif Technol 114:53–63CrossRefGoogle Scholar
  38. 38.
    Kim UJ, Furtado CA, Liu X, Chen G, Eklund PC (2005) Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes. J Am Chem Soc 127:15437–15445CrossRefGoogle Scholar
  39. 39.
    Ali SD, Hussain ST, Gilani SR (2013) Synthesis, characterization and magnetic properties of carbon nanotubes decorated with magnetic MIIFe2O4 nanoparticles. Appl Surf Sci 271:118–124CrossRefGoogle Scholar
  40. 40.
    Kardimi K, Tsoufis T, Tomou A, Kooi BJ, Prodromidis MI, Gournis D (2012) Synthesis and characterization of carbon nanotubes decorated with Pt and PtRu nanoparticles and assessment of their electrocatalytic performance. Int J Hydrog Energy 37:1243–1253CrossRefGoogle Scholar
  41. 41.
    Buonomenna MG, Macchi P, Davoli M, Drioli E (2007) Poly(vinylidene fluoride) membranes by phase inversion: the role the casting and coagulation conditions play in their morphology, crystalline structure and properties. Eur Polym J 43:1557–1572CrossRefGoogle Scholar
  42. 42.
    Li T, Zhong G, Fu R, Yang Y (2010) Synthesis and characterization of Nafion/cross-linked PVP semi-interpenetrating polymer network membrane for direct methanol fuel cell. J Membr Sci 354:189–197CrossRefGoogle Scholar
  43. 43.
    Azambre B, Zenboury L, Koch A, Weber JV (2009) Adsorption and desorption of NOx on commercial ceria-zirconia (CexZr1−xO2) mixed oxides: a combined TGA, TPD-MS, and DRIFTS study. J Phys Chem C 113:13287–13299CrossRefGoogle Scholar
  44. 44.
    Addo Ntim S, Mitra S (2012) Adsorption of arsenic on multiwall carbon nanotube–zirconia nanohybrid for potential drinking water purification. J Colloid Interface Sci 375:154–159CrossRefGoogle Scholar
  45. 45.
    Eder D (2010) Carbon nanotube—inorganic hybrids. Chem Rev 110:1348–1385CrossRefGoogle Scholar
  46. 46.
    Jian P, Yahui H, Yang W, Linlin L (2006) Preparation of polysulfone—Fe3O4 composite ultrafiltration membrane and its behavior in magnetic field. J Membr Sci 284:9–16CrossRefGoogle Scholar
  47. 47.
    Daraei P, Madaeni SS, Ghaemi N, Ahmadi Monfared H, Khadivi MA (2013) Fabrication of PES nanofiltration membrane by simultaneous use of multi-walled carbon nanotube and surface graft polymerization method: comparison of MWCNT and PAA modified MWCNT. Sep Purif Technol 104:32–44CrossRefGoogle Scholar
  48. 48.
    Le-Clech P, Chen V, Fane TAG (2006) Fouling in membrane bioreactors used in wastewater treatment. J Membr Sci 284:17–53CrossRefGoogle Scholar
  49. 49.
    Tijing LD, Choi J-S, Lee S, Kim S-H, Shon HK (2014) Recent progress of membrane distillation using electrospun nanofibrous membrane. J Membr Sci 453:435–462CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Oil & Gas Reservoir Geology and ExploitationSouthwest Petroleum UniversityChengduPeople’s Republic of China
  2. 2.College of Chemistry and Chemical EngineeringSouthwest Petroleum UniversityChengduPeople’s Republic of China
  3. 3.Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan ProvinceSouthwest Petroleum UniversityChengduPeople’s Republic of China

Personalised recommendations