Skip to main content

Advertisement

Log in

Selective doping of nitrogen into carbon materials without catalysts

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Selective doping of nitrogen into carbon materials in the absence of catalysts is a key for various applications of carbon materials. It is well known that most nitrogen-containing raw materials generate unnecessary functional groups during carbonization. Many researchers have noticed the significance of the selective nitrogen doping, whereas only a few works have reported the selective doping. In addition, those few works used catalysts to synthesize nitrogen-doped carbon materials, but the presence of catalysts limits the applications of nitrogen-doped carbon materials. This study found an unusual aromatic compound, imidazo[1,2-a]pyridine (IP), which maintained 88 % of the functional groups of as-received IP even after carbonization at 673 K in the absence of catalysts, and the functional groups were further maintained up to 773 K. The percentage of remaining functional groups was revealed using our state-of-the-art techniques of simulated X-ray photoelectron spectroscopy and Raman spectroscopy combined with transition state calculation using density functional theory. The low carbonization temperature as well as selective doping of nitrogen was achieved because of the low activation energy of dehydrogenation reaction among IP molecules compared to the high activation energy of radical formation for scission of C–N bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Shen W, Fan W (2013) Nitrogen-containing porous carbons: synthesis and application. J Mater Chem A 1:999–1013

    Article  Google Scholar 

  2. Parambhath VB, Nagar R, Ramaprabhu S (2012) Effect of nitrogen doping on hydrogen storage capacity of palladium decorated graphene. Langmuir 28:7826–7833

    Article  Google Scholar 

  3. Choi HJ, Jung SM, Seo JM, Chang DW, Dai L, Baek JB (2012) Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 1:534–551

    Article  Google Scholar 

  4. Wang H, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 2:781–794

    Article  Google Scholar 

  5. Patel M, Feng W, Savaram K, Khoshi MR, Huang R, Sun J et al (2015) Microwave enabled one-pot, one-step fabrication and nitrogen doping of holey graphene oxide for catalytic applications. Small 11:3358–3368

    Article  Google Scholar 

  6. Zhang L, Xia Z (2011) Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J Phys Chem C 115:11170–11176

    Article  Google Scholar 

  7. Lv R, Terrones M (2012) Towards new graphene materials: doped graphene sheets and nanoribbons. Mater Lett 78:209–218

    Article  Google Scholar 

  8. Daems N, Sheng X, Vankelecom FJI, Pescarmona PP (2014) Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction. J Mater Chem A 2:4085–4110

    Article  Google Scholar 

  9. Wang X, Hou Z, Ikeda T, Huang SF, Terakura K, Boero M et al (2011) Selective nitrogen doping in graphene: Enhanced catalytic activity for the oxygen reduction reaction. Phys Rev B 84:245434

    Article  Google Scholar 

  10. Lv R, Li Q, Botello-Méndez AR, Hayashi T, Wang B, Berkdemir A et al (2012) Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Sci Rep 2:586

    Article  Google Scholar 

  11. Shafeeyan MS, Daud WMAW, Houshmand A, Shamiri A (2010) A review on surface modification of activated carbon for carbon dioxide adsorption. J Anal Appl Pyrol 89:143–151

    Article  Google Scholar 

  12. Yamada Y, Miyauchi M, Kim J, Hirose-Takai K, Sato Y, Suenaga K et al (2011) Exfoliated graphene ligands stabilizing copper cations. Carbon 49:3375–3378

    Article  Google Scholar 

  13. Yamada Y, Suzuki Y, Yasuda H, Uchizawa S, Hirose-Takai K, Sato Y et al (2014) Functionalized graphene sheets coordinating metal cations. Carbon 75:81–94

    Article  Google Scholar 

  14. Kundu S, Xia W, Busser W, Becker M, Schmidt DA, Havenith M et al (2010) The formation of nitrogen-containing functional groups on carbon nanotube surfaces: a quantitative XPS and TPD study. Phys Chem Chem Phys 12:4351–4359

    Article  Google Scholar 

  15. Zhang LS, Liang XQ, Song WG, Wu ZY (2010) Identification of the nitrogen species on N-doped graphene layers and Pt/NG composite catalyst for direct methanol fuel cell. Phys Chem Chem Phys 12:12055–12059

    Article  Google Scholar 

  16. Kumar A, Ganguly A, Papakonstantinou P (2012) Thermal stability study of nitrogen functionalities in a graphene network. J Phys: Condens Mater 24:235503

    Google Scholar 

  17. Pels JR, Kapteijn F, Moulijn JA, Zhu Q, Thomas KM (1995) Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 33:1641–1653

    Article  Google Scholar 

  18. Lu YF, Lo ST, Lin JC, Zhang W, Lu JY, Liu FH et al (2013) Nitrogen-doped graphene sheets grown by chemical vapor deposition: synthesis and influence of nitrogen impurities on carrier transport. ACS Nano 7:6522–6532

    Article  Google Scholar 

  19. Walker PL Jr (1990) Carbon: an old but new material revisited. Carbon 28:261–279

    Article  Google Scholar 

  20. Isaacs LG (1970) The graphitization of organic compounds-III. Heterocyclic nitrogen derivatives of anthracene and phenanthrene. Carbon 8:1–5

    Article  Google Scholar 

  21. Kinney CR, Delbel E (1954) Pyrolytic behavior of unsubstituted aromatic hydrocarbons. Ind Eng Chem 46:548–556

    Article  Google Scholar 

  22. Maldonado S, Morin S, Stevenson KJ (2006) Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon 44:1429–1437

    Article  Google Scholar 

  23. Yasuda S, Yu L, Kim J, Murakoshi K (2013) Selective nitrogen doping in graphene for oxygen reduction reactions. Chem Commun 49:9627–9629

    Article  Google Scholar 

  24. Yamada Y, Kim J, Matsuo S, Sato S (2014) Nitrogen-containing graphene analyzed by X-ray photoelectron spectroscopy. Carbon 70:59–74

    Article  Google Scholar 

  25. Bieri M, Treier M, Cai J, Aït-Mansour K, Ruffieux P, Gröning O et al (2009) Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chem Commun 45:6919–6921

    Article  Google Scholar 

  26. Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S et al (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470–473

    Article  Google Scholar 

  27. Chen L, Hernandez Y, Feng X, Müllen K (2012) Nitrogenated holey two-dimensional structures. Angew Chem Int Ed 51:7640–7654

    Article  Google Scholar 

  28. Bieri M, Blankenburg S, Kivala M, Pignedoli CA, Ruffieux P, Müllen K et al (2011) Surface-supported 2D heterotriangulene polymers. Chem Commun 47:10239–10241

    Article  Google Scholar 

  29. Griffin RR, Scaroni AW, Walker PL Jr (1991) Cokes and graphites produced from anthracene, acridine, and phenazine. Carbon 29:991–998

    Article  Google Scholar 

  30. Madison JJ, Roberts RM (1958) Pyrolysis of aromatics and related heterocyclics. Ind Eng Chem 50:237–250

    Article  Google Scholar 

  31. Ruland W (1965) X-ray studies on the carbonization and graphitization of acenaphthylene and bifluorenyl. Carbon 2:365–378

    Article  Google Scholar 

  32. Moraski GC, Markley LD, Chang M, Cho S, Franzblau SC, Hwang CH et al (2012) Generation and exploration of new classes of antitubercular agents: The optimization of oxazolines, oxazoles, thiazolines, thiazoles to imidazo[1,2-a]pyridines and isomeric 5,6-fused scaffolds. Bioorg Med Chem 20:2214–2220

    Article  Google Scholar 

  33. Yamada Y, Yasuda H, Murota K, Nakamura M, Sodesawa T, Sato S (2013) Analysis of heat-treated graphite oxide by X-ray photoelectron spectroscopy. J Mater Sci 48:8171–8198

    Article  Google Scholar 

  34. Kim J, Yamada Y, Kawai M, Tanabe T, Sato S (2015) Spectral change of simulated X-ray photoelectron spectroscopy from graphene to fullerene. J Mater Sci 50:6739–6747

    Article  Google Scholar 

  35. Yamada Y, Sato S (2015) Structural analysis of carbon materials by X-ray photoelectron spectroscopy using computational chemistry. Tanso 269:181–189

    Article  Google Scholar 

  36. Kim J, Yamada Y, Suzuki Y, Ciston J, Sato S (2014) Pyrolysis of epoxidized fullerenes analyzed by spectroscopies. J Phys Chem C 118:7076–7084

    Article  Google Scholar 

  37. Briggs D, Grant JT (2003) Surface analysis by Auger and X-ray photoelectron spectroscopy. IMPublications and SurfaceSpectra Ltd., West Sussex and Manchester, pp 401–403

    Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2009) Connecticut: Gaussian 09, Revision D.01. Gaussian Inc, Wallingford

    Google Scholar 

  39. Lewis IC, Edstrom T (1963) Thermal reactivity of polynuclear aromatic hydrocarbons. J Org Chem 28:2050–2057

    Article  Google Scholar 

  40. Tanaka Y (2015) Analysis of pyrolytic process of nitrogen-containing aromatic compounds. Master Thesis, Chiba University

  41. Brown MS, Jorio A, Corio P, Dresselhaus G, Dresselhaus G, Saito R, Kneipp K (2001) Origin of the Breit–Wigner–Fano lineshape of the tangential G-band feature of metallic carbon nanotubes. Phys Rev B 63:155414

    Article  Google Scholar 

  42. Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of carbon nanotubes. Phys Rep 409:47–99

    Article  Google Scholar 

  43. Sasaki K, Tokura Y, Sogawa T (2013) The origin of Raman D band: bonding and antibonding orbitals in graphene. Crystals 3:120–140

    Article  Google Scholar 

  44. Ferrari AC, Robertson J (2004) Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos Trans R Soc Lond A 362:2477–2512

    Article  Google Scholar 

  45. Schwan J, Ulrich S, Batori V, Ehrhardt H, Silva SRP (1996) Raman spectroscopy on amorphous carbon films. J Appl Phys 80:440–447

    Article  Google Scholar 

  46. Eckmann A, Felten A, Mishchenko A, Britnell L, Krupke R, Novoselov KS, Casiraghi C (2012) Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett 12:3925–3930

    Article  Google Scholar 

  47. Schaffer HE, Chance RR, Silbey RJ, Knoll K, Schrock RR (1991) Conjugation length dependence of Raman scattering in a series of linear polyenes: implications for polyacetylene. J Chem Phys 94:4161–4170

    Article  Google Scholar 

  48. Larkin PJ (2011) IR and Raman spectroscopy. Principles and spectral interpretation. Elsevier Inc, Amsterdam, pp 86–90

    Google Scholar 

  49. Colthup NB, Daly LH, Wiberley SE (1990) Introduction to infrared and Raman spectroscopy. Academic Press, Massachusetts, pp 261–279

    Book  Google Scholar 

  50. Chen ZY, Zhao JP, Yano T, Ooie T, Yoneda M, Sakakibara J (2000) Observation of sp3 bonding in tetrahedral amorphous carbon using visible Raman spectroscopy. J Appl Phys 88:2305–2308

    Article  Google Scholar 

  51. Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Raman scattering in fullerenes. J Raman Spectrosc 27:351–371

    Article  Google Scholar 

  52. Tarrant RN, Warschkow O, McKenzie DR (2006) Raman spectra of partially oriented sp2 carbon films: experimental and modelled. Vib Spectrosc 41:232–239

    Article  Google Scholar 

  53. Colangeli L, Mennella V, Baratta GA, Bussoletti E, Strazzula G (1992) Raman and infrared spectra of polycyclic aromatic hydrocarbon molecules of possible astrophysical interest. Astrophys J 396:369–377

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Murata Science Foundation in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Yamada.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamada, Y., Matsuo, S., Abe, K. et al. Selective doping of nitrogen into carbon materials without catalysts. J Mater Sci 51, 8900–8915 (2016). https://doi.org/10.1007/s10853-016-0142-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0142-y

Keywords

Navigation