Journal of Materials Science

, Volume 51, Issue 21, pp 9562–9572 | Cite as

Effect of hot calendering on physical properties and water vapor transfer resistance of bacterial cellulose films

  • V. L. D. Costa
  • A. P. Costa
  • M. E. Amaral
  • C. Oliveira
  • M. Gama
  • F. Dourado
  • R. M. Simões
Original Paper


This work investigates the effect of hot calendering on bacterial cellulose (BC) films properties, aiming the achievement of good transparency and barrier property. A comparison was made using vegetal cellulose (VC) films on a similar basis weight of around 40 g.m−2. The optical–structural, mechanical, and barrier properties of BC films were studied and compared with those of highly beaten VC films. The Young’s moduli and tensile index of the BC films are much higher than those obtained for VC (14.5–16.2 vs 10.8–8.7 GPa and 146.7–64.8 vs 82.8–40.3 N.m.g−1), respectively. Calendering increased significantly the transparency of BC films from 53.0 to 73.0 %. The effect of BC ozonation was also studied. Oxidation with ozone somewhat enhanced the brightness and transparency of the BC films, but at the expenses of slightly lower mechanical properties. BC films exhibited a low water vapor transfer rate, when compared to VC films and this property decreased by around 70 % following calendering, for all films tested. These results show that calendering could be used as a process to obtain films suitable for food packaging applications, where transparency, good mechanical performance, and barrier properties are important. The BC films obtained herein are valuable products that could be a good alternative to the highly used plastics in this industry.


Bacterial Cellulose Water Vapor Permeability Ozone Treatment Cellulose Nanofibrils Tensile Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank FCT (Fundação para a Ciência e Tecnologia) and FEDER (Fundo Europeu de Desenvolvimento Regional) for the financial support of the project FCT PTDC/AGR-FOR/3090/2012—FCOMP-01-0124-FEDER-027948 and the awarding of a research grant for Vera Costa.


  1. 1.
    Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibers and nanocomposites. J Mater Sci 45:1–33. doi: 10.12691/jmpc-2-1-1 CrossRefGoogle Scholar
  2. 2.
    Castro C, Zuluaga R, Putaux JL, Caro G, Mondragon I, Ganan P (2011) Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohyd Polym 84:96–102CrossRefGoogle Scholar
  3. 3.
    Basta AH, El-Saied H (2009) Performance of improved bacterial cellulose application in the production of functional paper. J Appl Microbiol 107:2098–2107CrossRefGoogle Scholar
  4. 4.
    Santos SM, Carbajo JM, Gomez N, Quintana E, Ladero M, Sanchez A, Chinga-Carrasco G, Villar JC (2016) Use of bacterial cellulose in degraded paper restoration Part I: application on model papers. J Mater Sci 51(3):1541–1552. doi: 10.1007/s10853-015-9476-0 CrossRefGoogle Scholar
  5. 5.
    Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRefGoogle Scholar
  6. 6.
    Keshk SM (2014) Bacterial cellulose production and its industrial applications. J Bioprocess Biotech 4:1–10CrossRefGoogle Scholar
  7. 7.
    Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stabil 59:101–106CrossRefGoogle Scholar
  8. 8.
    Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12CrossRefGoogle Scholar
  9. 9.
    Yano S, Maeda H, Nakajima M, Hagiwara T, Sawaguchi T (2008) Preparation and mechanical properties of bacterial cellulose nanocomposites loaded with silica nanoparticles. Cellulose 15:111–120CrossRefGoogle Scholar
  10. 10.
    Iguchi M, Yamanaka S, Budhiono A (2000) Review: bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35:261–270. doi: 10.1016/j.carbpol.2012.03.045 CrossRefGoogle Scholar
  11. 11.
    Mormino R, Bungay H (2003) Composites of bacterial cellulose and paper made with a rotating disk bioreactor. Appl Microbiol Biotechnol 62:503–506CrossRefGoogle Scholar
  12. 12.
    Delgado-Aguilar M, González I, Pèlach MA, De La Fuente E, Negro C, Mutje P (2015) Improvement of deinked old newspaper/old magazine pulp suspensions by means of nanofibrillated cellulose addition. Cellulose 22:789–802CrossRefGoogle Scholar
  13. 13.
    Mohite BV, Patil SV (2014) A novel biomaterial: bacterial cellulose and its new era applications. Biotechnol Appl Biochem 61:101–110CrossRefGoogle Scholar
  14. 14.
    Charles LA, Waterhouse JF (1987) The effect of supercalendering on the strength properties of paper. Institute of Paper Chemistry. Technical Paper Series, number 244Google Scholar
  15. 15.
    Oliveira C, Carvalho V, Domingues L, Gama FM (2015) Recombinant CBM-fusion technology—applications overview. Biotechnol Adv 33(3–4):358–369CrossRefGoogle Scholar
  16. 16.
    Kalia S, Dufresne A, Cherian BM, Kaith BS, Avérous L, Njuguna J (2011) Nassiopoulos (2011) cellulose-based bio- and nanocomposites: a review. Int J Polym Sci 837875:1–35Google Scholar
  17. 17.
    Lee K-Y, Tammelin T, Schulfter K, Kiiskinen H, Samela J, Bismarck A (2012) High performance cellulose nanocomposites: comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose. Appl. Mater. Interfaces 4(8):4078–4086CrossRefGoogle Scholar
  18. 18.
    Dhar P, Bhardwaj U, Kumar A, Katiyar V (2014) Cellulose nanocrystals: a potential nanofiller for food packaging applications. In: Komolprasert V, Turowski P (eds) Food Additives and Packaging, vol 1162. American Chemical Society, Washington, pp 197–239Google Scholar
  19. 19.
    Vernhes P, Bloch J, Blayo A, Pineaux P (2009) Effect of calendering on paper surface micro-structure: a multi-scale analysis. J Mater Process Technol 209:5204–5210CrossRefGoogle Scholar
  20. 20.
    Leskelä M (1998) Optical properties chapter 4. In: Niskanen K (ed) Paper physics (Book 16). Fapet, HelsinkiGoogle Scholar
  21. 21.
    Hestrin S, Schramm M (1954) Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58(2):345–352CrossRefGoogle Scholar
  22. 22.
    Sihtola H, Kyrklund B, Laamanen L, Palenius L (1963) Comparison and conversion of viscosity and DP values by different methods. Paperi Ja Puu 45(4a):225–232Google Scholar
  23. 23.
    Segal L, Creely JJ, Martin AE Jr, Conrad CM (1962) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Tex Res J 29:786–794CrossRefGoogle Scholar
  24. 24.
    Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585CrossRefGoogle Scholar
  25. 25.
    Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6):1687–1691CrossRefGoogle Scholar
  26. 26.
    González I, Alcalá M, Chinga-Carrasco G, Vilaseca F, Boufi S, Mutjé P (2014) From paper to nanopaper: evolution of mechanical and physical properties. Cellulose 21:2599–2609CrossRefGoogle Scholar
  27. 27.
    Pouyet F, Lachenal D, Das S, Hirat C (2013) Minimizing viscosity loss during totally chlorine-free bleaching of hardwood kraft pulp. BioResources 8(1):238–249Google Scholar
  28. 28.
    Tsouko E, Kourmentza C, Ladakis D, Kopsahelis N, Mandala I, Papanikolaou S, Paloukis F, Alves V, Koutinas A (2015) Bacterial cellulose production from industrial waste and by-product streams. Int J Mol Sci 16(7):14832–14849CrossRefGoogle Scholar
  29. 29.
    Gil N, Gil C, Amaral ME, Costa AC, Duarte AP (2009) Use of enzymes to improve the refining of a bleached eucalyptus globulus kraft pulp. Biochem Eng J 46:89–95CrossRefGoogle Scholar
  30. 30.
    Retegi A, Gabilondo N, Peña C, Zuluaga R, Castro C, Gañan P, de la Caba K, Mondragon I (2010) Bacterial cellulose films with controlled microstructure–mechanical property relationships. Cellulose 17:661–669CrossRefGoogle Scholar
  31. 31.
    Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structure. Biomacromolecules 11:2195–2198CrossRefGoogle Scholar
  32. 32.
    Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21(16):1595–1598CrossRefGoogle Scholar
  33. 33.
    Zhang L, Batchelor W, Varanasi S, Tsuzuki T, Wan X (2012) Effect of cellulose nanofiber dimensions on sheet forming through filtration. Cellulose 19:561–574CrossRefGoogle Scholar
  34. 34.
    Biermann CJ (1996) Handbook of pulping and papermaking, 2nd edn. Academic Press, San DiegoGoogle Scholar
  35. 35.
    Nakagaito AN, Iwamoto S, Yano H (2005) Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl Phys A 80:93–97CrossRefGoogle Scholar
  36. 36.
    Yousefi H, Faezipour M, Hedjazi S, Mousavi MM, Azusa M, Heidari AH (2013) Comparative study of paper and nanopaper properties prepared from bacterial cellulose nanofibers and fibers/ground cellulose nanofibers of canola straw. Ind Crop Prod 43:732–737CrossRefGoogle Scholar
  37. 37.
    Chirat C, Lachenal D (1994) Effect of ozone on pulp components application to bleaching of Kraft pulps. Holzforschung 48(Suppl):133–139CrossRefGoogle Scholar
  38. 38.
    Fall AB, Lindström SB, Sundman O, Ödberg L, Wagberg L (2011) Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir 27(18):11332–11338CrossRefGoogle Scholar
  39. 39.
    Fendler A, Villanueva MP, Giminez E, Lagarón JM (2007) Characterization of the barrier properties of composites of HDPE and purified cellulose fibers. Cellulose 14:427–438CrossRefGoogle Scholar
  40. 40.
    Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85CrossRefGoogle Scholar
  41. 41.
    Nair SS, Zhu JY, Deng Y, Ragauskas AJ (2014) High performance green barriers based on nanocellulose. Sustain. Chem. Process 2:23CrossRefGoogle Scholar
  42. 42.
    Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M (1989) The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater Sci 24:3141–3145. doi: 10.1007/BF01139032 CrossRefGoogle Scholar
  43. 43.
    Retulainen E, Moss P, Nieminen K (1997) Effect of calendering and wetting on paper properties. J Pulp Pap Sci 23(1):J34–J39Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • V. L. D. Costa
    • 1
  • A. P. Costa
    • 1
    • 2
  • M. E. Amaral
    • 1
    • 2
  • C. Oliveira
    • 3
  • M. Gama
    • 3
  • F. Dourado
    • 3
  • R. M. Simões
    • 1
    • 2
  1. 1.Research Unit of Fiber Materials and Environmental Technologies (FibEnTech - UBI)Universidade da Beira InteriorCovilhãPortugal
  2. 2.Department of ChemistryUniversidade da Beira InteriorCovilhãPortugal
  3. 3.CEB—Centre of Biological EngineeringUniversity of MinhoBragaPortugal

Personalised recommendations