Journal of Materials Science

, Volume 51, Issue 18, pp 8471–8483 | Cite as

Morphological study of branched Sn structure formed under selected electrochemical conditions

  • Hanan Teller
  • Shani Ohanona
  • Diwakar Kashyap
  • Alex Schechter
Original Paper


A controlled electrodeposition process of branched micrometric and nanometric metallic tin structures was developed. Selected potentiostatic and galvanostatic techniques were explored with the aim of forming hierarchical shaped Sn on carbon porous electrodes by a simple template-free synthesis. We have studied the influence of continuous potential steps ranging from −0.9 to −4 V versus Ag/AgCl which show a classical nucleation growth mechanism. Under high overpotentials above −1.5 V, the reaction is governed by mass transport, which enables the development of vertically aligned dendrites. Upon reaching a dendrite particle size of 2–5 µm, Sn2+ reduction is facilitated on branches extending at an angle of about 45° from the main stem due to enhanced spherical diffusion to these newly evolving sites. A competing reaction of hydrogen evolution plays a significant role during initial nucleation stages and throughout particle evolution by reducing the overall columbic efficiency. Further study of means to affect the mass transport and morphology has led us to investigate the influence of pulse deposition duty cycle as well as use of anionic (SDS—sodium dodecyl sulfate) and cationic (HDTAB—hexadecyltrimethylammonium bromide) surfactants. While short pulses and long rest time promote the formation of high surface density of small nuclei, surfactants directly influence the tin ions (SDS) or adsorbed on the negatively charged electrode (HDTBA). Finally, the study of an electrodeposition method using strong acid additives was developed. It is shown from SEM and EQCM studies that careful selection of the acid type and concentration gives rise to the formation of a much more advanced network structure promoted by selective etching and co-reduction of dissolved ions. Highly interesting two-dimensional tin films formed in this process are also reported.


Hydrogen Evolution Hydrogen Evolution Reaction Electrodeposition Process High Overpotentials Columbic Efficiency 



The authors thank “The Israeli Ministry of National Infrastructures, Energy and Water” for their kind support under project 21111005/201177.


  1. 1.
    Sun Z, Cao C, Han W-Q (2015) A scalable formation of nano-SnO2 anode derived from tin metal-organic frameworks for lithium-ion battery. RSC Adv 5:72825–72829. doi: 10.1039/C5RA12295C CrossRefGoogle Scholar
  2. 2.
    Meyyappan M (2013) Nanostructured materials for supercapacitors. J Vac Sci Technol Vac Surf Film 31:050803. doi: 10.1116/1.4802772 CrossRefGoogle Scholar
  3. 3.
    Candelaria SL, Shao Y, Zhou W et al (2012) Nanostructured carbon for energy storage and conversion. Nano Energy 1:195–220. doi: 10.1016/j.nanoen.2011.11.006 CrossRefGoogle Scholar
  4. 4.
    Novikov A, Nowottnick M (2012) Characterization of nanoscaled solder material. Phys status solidi 209:819–824. doi: 10.1002/pssa.201100541 CrossRefGoogle Scholar
  5. 5.
    Wang Y, Zhao X, Xie X et al (2015) Effects of nano-SiO2 particles addition on the microstructure, wettability, joint shear force and the interfacial IMC growth of Sn3.0Ag0.5Cu solder. J Mater Sci Mater Electron. doi: 10.1007/s10854-015-3151-8 Google Scholar
  6. 6.
    Ma H, Teng K, Fu Y et al (2011) Synthesis of visible-light responsive Sn–SnO2/C photocatalyst by simple carbothermal reduction. Energy Environ Sci 4:3067–3074. doi: 10.1039/C1EE01095F CrossRefGoogle Scholar
  7. 7.
    Agashe C, Takwale MG, Marathe BR, Bhide VG (1988) Structural properties of SnO2: F films deposited by spray pyrolysis. Sol Energy Mater 17:99–117. doi: 10.1016/0165-1633(88)90010-X CrossRefGoogle Scholar
  8. 8.
    Zhang W, Zeng W, Miao B (2015) Preparation of SnO2 nanoflower with porous nanosheet via a one-step hydrothermal method. Mater Lett 158:377–379. doi: 10.1016/j.matlet.2015.06.056 CrossRefGoogle Scholar
  9. 9.
    Das S, Jayaraman V (2014) SnO2: a comprehensive review on structures and gas sensors. Prog Mater Sci 66:112–255. doi: 10.1016/j.pmatsci.2014.06.003 CrossRefGoogle Scholar
  10. 10.
    Dattoli EN, Wan Q, Guo W et al (2007) Fully transparent thin-film transistor devices based on SnO2 nanowires. Nano Lett 7:2463–2469. doi: 10.1021/nl0712217 CrossRefGoogle Scholar
  11. 11.
    Kaushik V, Sharma H, Vankar VD (2012) Recent developments in the growth and properties of carbon nanotubes and carbon nanostructures: a review. Int J Green Nanotechnol 4:534–540. doi: 10.1080/19430892.2012.738508 CrossRefGoogle Scholar
  12. 12.
    Villain S, Knauth P, Schwitzgebel G (1997) Electrodeposition of nanocrystalline silver: study of grain growth by measurement of reversible electromotive force. J Phys Chem B 101:7452–7454. doi: 10.1021/jp970330e CrossRefGoogle Scholar
  13. 13.
    Wirtz M, Parker M, Kobayashi Y, Martin CR (2002) Template-synthesized nanotubes for chemical separations and analysis. Chem Eur J 8:3572–3578. doi: 10.1002/1521-3765(20020816)8:16<3572:AID-CHEM3572>3.0.CO;2-9 CrossRefGoogle Scholar
  14. 14.
    Sloan J, Wright DM, Bailey S et al (1999) Capillarity and silver nanowire formation observed in single walled carbon nanotubes. Chem Commun. doi: 10.1039/A901572H Google Scholar
  15. 15.
    Prieto AL, Martín-González M, Keyani J et al (2003) The electrodeposition of high-density, ordered arrays of Bi1-xSbx nanowires. J Am Chem Soc 125:2388–2389. doi: 10.1021/ja029394f CrossRefGoogle Scholar
  16. 16.
    Saejeng Y, Tantavichet N (2009) Preparation of Pt–Co alloy catalysts by electrodeposition for oxygen reduction in PEMFC. J Appl Electrochem 39:123–134. doi: 10.1007/s10800-008-9644-x CrossRefGoogle Scholar
  17. 17.
    Shin H-C, Dong J, Liu M (2003) Nanoporous structures prepared by an electrochemical deposition process. Adv Mater 15:1610–1614. doi: 10.1002/adma.200305160 CrossRefGoogle Scholar
  18. 18.
    Xiang J, Liu B, Wu S-T et al (2005) A controllable electrochemical fabrication of metallic electrodes with a nanometer/angstrom-sized gap using an electric double layer as feedback. Angew Chem Int Ed 44:1265–1268. doi: 10.1002/anie.200461797 CrossRefGoogle Scholar
  19. 19.
    Ye W, Yan J, Ye Q, Zhou F (2010) Template-free and direct electrochemical deposition of hierarchical dendritic gold microstructures: growth and their multiple applications. J Phys Chem C 114:15617–15624. doi: 10.1021/jp105929b CrossRefGoogle Scholar
  20. 20.
    Wang J, Wei L, Zhang L et al (2012) Zinc-doped nickel oxide dendritic crystals with fast response and self-recovery for ammonia detection at room temperature. J Mater Chem 22:20038–20047. doi: 10.1039/C2JM34192A CrossRefGoogle Scholar
  21. 21.
    Li G-R, Xu H, Lu X-F et al (2013) Electrochemical synthesis of nanostructured materials for electrochemical energy conversion and storage. Nanoscale 5:4056–4069. doi: 10.1039/C3NR00607G CrossRefGoogle Scholar
  22. 22.
    Despić AR, Popov KI (1972) Transport-controlled deposition and dissolution of metals. In: Conway BE, Bockris JO (eds) Modern aspects of electrochemistry No. 7 SE-4. Plenum Press, New York, pp 199–313CrossRefGoogle Scholar
  23. 23.
    Diggle JW, Despić ARBJ (1969) The mechanism of the dendritic electrocrystallization of zinc. J Electrochem Soc 116:1503–1514CrossRefGoogle Scholar
  24. 24.
    Nikolić ND, Popov KI (2010) Hydrogen Co-deposition effects on the structure of electrodeposited copper In: Djokic SS (ed) Modern aspects of electrochemistry No. 48. Springer, Berlin, pp 1--70. doi: 10.1007/978-1-4419-5589-0
  25. 25.
    Bicelli LP, Bozzini B, Mele C, D’Urzo L (2008) A review of nanostructural aspects of metal electrodeposition. Int J Electrochem Sci 3:356–408Google Scholar
  26. 26.
    Han C, Liu Q, Ivey DG (2008) Kinetics of Sn electrodeposition from Sn(II)–citrate solutions. Electrochim Acta 53:8332–8340. doi: 10.1016/j.electacta.2008.06.037 CrossRefGoogle Scholar
  27. 27.
    Jeun J-H, Kim W-S, Hong S-H (2013) Electrophoretic deposition of carbon nanoparticles on dendritic Sn foams fabricated by electrodeposition. Mater Lett 112:109–112. doi: 10.1016/j.matlet.2013.09.002 CrossRefGoogle Scholar
  28. 28.
    Krichevski O, Teller H, Subramanian P, Schechter A (2015) The synthesis of metallic β-Sn nanostructures for use as a novel Pt catalyst support and evaluation of their activity toward methanol electrooxidation. Electrocatalysis. doi: 10.1007/s12678-015-0273-y Google Scholar
  29. 29.
    Elbasiony AMR, El Abedin SZ, Endres F (2014) Electrochemical synthesis of freestanding tin nanowires from ionic liquids. J Solid State Electrochem 18:951–957. doi: 10.1007/s10008-013-2340-8 CrossRefGoogle Scholar
  30. 30.
    Mackay D, Janish M, Sahaym U et al (2014) Template-free electrochemical synthesis of tin nanostructures. J Mater Sci 49:1476–1483. doi: 10.1007/s10853-013-7917-1 CrossRefGoogle Scholar
  31. 31.
    Owen CD, Norton MG (2016) Growth mechanism of one dimensional tin nanostructures by electrodeposition. J Mater Sci 51:577–588. doi: 10.1007/s10853-015-9323-3 CrossRefGoogle Scholar
  32. 32.
    Bearfield DW, Greenwood EA, Warwick ME (1983) Laboratory studies of the corrosion of side-seams in soldered tinplate containers: part II. The role of the solder and the electrolyte. Br Corros J 18:51–54. doi: 10.1179/000705983798274092 CrossRefGoogle Scholar
  33. 33.
    Witten TA, Sander LM (1981) Diffusion-limited aggregation, a kinetic critical phenomenon. Phys Rev Lett 47:1400–1403CrossRefGoogle Scholar
  34. 34.
    Lee B-Z, Lee DN (1998) Spontaneous growth mechanism of tin whiskers. Acta Mater 46:3701–3714. doi: 10.1016/S1359-6454(98)00045-7 CrossRefGoogle Scholar
  35. 35.
    Nikolić N, Branković G, Lačnjevac U (2012) Formation of two-dimensional (2D) lead dendrites by application of different regimes of electrolysis. J Solid State Electrochem 16:2121–2126. doi: 10.1007/s10008-011-1626-y CrossRefGoogle Scholar
  36. 36.
    Gileadi E (2011) Physical Electrochemistry. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 98–99Google Scholar
  37. 37.
    Popov KI, Pavlović MG, Maksimović MD, Krstajić SS (1978) The comparison of galvanostatic and potentiostatic copper powder deposition on platinum and aluminium electrodes. J Appl Electrochem 8:503–514. doi: 10.1007/BF00610795 CrossRefGoogle Scholar
  38. 38.
    Murphy CJ, Sau TK, Gole AM et al (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870. doi: 10.1021/jp0516846 CrossRefGoogle Scholar
  39. 39.
    Xiao J, Qi L (2011) Surfactant-assisted, shape-controlled synthesis of gold nanocrystals. Nanoscale 3:1383–1396. doi: 10.1039/C0NR00814A CrossRefGoogle Scholar
  40. 40.
    Gileadi E (2011) Physical Electrochemistry. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 297–302Google Scholar
  41. 41.
    Popov KI, Maksimovic MD (1989) Theory of the effect of electrodeposition at a periodically changing rate on the morphology of metal deposits. In: Conway BE, Bockris JO'M, White RE (eds) Modern aspects of electrochemistry, vol 19. Plenum, New York and London, pp 193–251CrossRefGoogle Scholar
  42. 42.
    Popov KI, Maksimović MD, Totovski DĆ (1982) Fundamental aspects of pulsating current metal electrodeposition VI: the comparison of electrode surface roughening in pulsating current and periodic reverse current electrodeposition of metals. Surf Technol 17:125–129. doi: 10.1016/0376-4583(82)90014-0 CrossRefGoogle Scholar
  43. 43.
    Gileadi E (2011) Physical Electrochemistry. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 253–264Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Hanan Teller
    • 1
  • Shani Ohanona
    • 1
  • Diwakar Kashyap
    • 1
  • Alex Schechter
    • 1
  1. 1.Department of Chemical SciencesAriel UniversityArielIsrael

Personalised recommendations