Journal of Materials Science

, Volume 51, Issue 17, pp 8148–8155 | Cite as

c-In2O3/α-Fe2O3 heterojunction photoanodes for water oxidation

  • Jiajia Cai
  • Song Li
  • Haijun Pan
  • Yinglei Liu
  • Gaowu Qin
Original Paper


Hematite (α-Fe2O3) is supposed to be one of the most promising photoanode candidates for solar-driven water splitting. However, the photoelectrochemical (PEC) performance of α-Fe2O3 is limited by fast recombination of carriers. In this work, we demonstrate that the recombination of α-Fe2O3 films could be suppressed by forming the heterojunction structure with cubic-In2O3. By utilizing the magnetron sputtering method, the In2O3/α-Fe2O3 films were prepared when the In concentration exceeded its solubility in α-Fe2O3 matrix, which was confirmed by the XRD and TEM analysis. The dependence of charge separation on heterojunction structure was evidenced by Mott–Schottky and EIS analyses. It was found that the enhanced separation of holes and electrons in α-Fe2O3 films contributed to higher PEC performance.


SnO2 Hematite In2O3 Oxygen Evolution Reaction Photocurrent Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Fundamental Research for the Central Universities (N130510003) and the Provincial Education Department of Liaoning (LJQ2014026). J.J. Cai thanks the Northeastern University for excellent doctoral dissertation breeding program and the Project of Cultivation of Outstanding Young Scientists of Liaoning Province (Grant No. 2014029205). G.W. Qin thanks the National Science Foundation of China (51525101).

Supplementary material

10853_2016_85_MOESM1_ESM.docx (161 kb)
Supplementary material 1 (DOCX 161 kb)


  1. 1.
    Kim D, Sakimoto KK, Hong D, Yang P (2015) Artificial photosynthesis for sustainable fuel and chemical production. Angew Chemie Int Ed 54:3259–3266. doi: 10.1002/anie.201409116 CrossRefGoogle Scholar
  2. 2.
    Le Formal F, Pastor E, Tilley SD et al (2015) Rate law analysis of water oxidation on a hematite surface. J Am Chem Soc 137:6629–6637. doi: 10.1021/jacs.5b02576 CrossRefGoogle Scholar
  3. 3.
    Klahr B, Gimenez S, Fabregat-Santiago F et al (2012) Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes. Energy Environ Sci 5:7626–7636. doi: 10.1039/c2ee21414h CrossRefGoogle Scholar
  4. 4.
    Klahr B, Gimenez S, Zandi O et al (2015) Competitive photoelectrochemical methanol and water oxidation with hematite electrodes. ACS Appl Mater Interfaces 7:7653–7660. doi: 10.1021/acsami.5b00440 CrossRefGoogle Scholar
  5. 5.
    Jang J-W, Du C, Ye Y et al (2015) Enabling unassisted solar water splitting by iron oxide and silicon. Nat Commun 6:7447. doi: 10.1038/ncomms8447 CrossRefGoogle Scholar
  6. 6.
    Bassi PS, Gurudayal Wong LH, Barber J (2014) Iron based photoanodes for solar fuel production. Phys Chem Chem Phys 16:11834–11842. doi: 10.1039/c3cp55174a CrossRefGoogle Scholar
  7. 7.
    Miao C, Ji S, Xu G et al (2012) Micro-nano-structured Fe2O3:Ti/ZnFe2O4 heterojunction films for water oxidation. ACS Appl Mater Interfaces 4:4428–4433. doi: 10.1021/am3011466 CrossRefGoogle Scholar
  8. 8.
    Warren SC, Voïtchovsky K, Dotan H et al (2013) Identifying champion nanostructures for solar water-splitting. Nat Mater 12:842–849. doi: 10.1038/nmat3684 CrossRefGoogle Scholar
  9. 9.
    Cai J, Li S, Li Z et al (2013) Electrodeposition of Sn-doped hollow α-Fe2O3 nanostructures for photoelectrochemical water splitting. J Alloy Compd 574:421–426CrossRefGoogle Scholar
  10. 10.
    Li S, Cai J, Mei Y et al (2014) Thermal oxidation preparation of doped hematite thin films for photoelectrochemical water splitting. Int J Photoenergy 2014:794370. doi: 10.1155/2014/794370 Google Scholar
  11. 11.
    Chen Z, Huang L, Zhang Q et al (2015) Electronic structures and transport properties of n-type-doped indium ixides. J Phys Chem C 119:4789–4795. doi: 10.1021/jp5104164 CrossRefGoogle Scholar
  12. 12.
    Meng X, Qin G, Goddard WA et al (2013) Theoretical understanding of enhanced photoelectrochemical catalytic activity of Sn-doped hematite: anisotropic catalysis and effects of morin transition and Sn doping. J Phys Chem C 117:3779–3784. doi: 10.1021/jp310740h CrossRefGoogle Scholar
  13. 13.
    Ling Y, Wang G, Wheeler DA et al (2011) Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett 11:2119–2125. doi: 10.1021/nl200708y CrossRefGoogle Scholar
  14. 14.
    Zandi O, Klahr BM, Hamann TW (2013) Highly photoactive Ti-doped α-Fe2O3 thin film electrodes: resurrection of the dead layer. Energy Environ Sci 6:634–642. doi: 10.1039/C2EE23620F CrossRefGoogle Scholar
  15. 15.
    Hou Y, Zuo F, Dagg A, Feng P (2013) A three-dimensional branched cobalt-doped α-Fe2O3 nanorod/MgFe2O4 heterojunction aray as a flexible photoanode for efficient photoelectrochemical water oxidation. Angew Chemie Int Ed 52:1248–1252. doi: 10.1002/anie.201207578 CrossRefGoogle Scholar
  16. 16.
    Preissler N, Bierwagen O, Ramu AT, Speck JS (2013) Electrical transport, electrothermal transport, and effective electron mass in single-crystalline In2O3 films. Phys Rev B 88:1–10. doi: 10.1103/PhysRevB.88.085305 CrossRefGoogle Scholar
  17. 17.
    Jiang Z, Jiang D, Yan Z et al (2015) A new visible light active multifunctional ternary composite based on TiO2–In2O3 nanocrystals heterojunction decorated porous graphitic carbon nitride for photocatalytic treatment of hazardous pollutant and H2 evolution. Appl Catal B 170–171:195–205. doi: 10.1016/j.apcatb.2015.01.041 CrossRefGoogle Scholar
  18. 18.
    Chi X, Liu C, Liu L et al (2014) Enhanced formaldehyde-sensing properties of mixed Fe2O3–In2O3 nanotubes. Mater Sci Semicond Process 18:160–164. doi: 10.1016/j.mssp.2013.11.016 CrossRefGoogle Scholar
  19. 19.
    Kotsikau D, Ivanovskaya M (2015) Influence of structure of Fe2O3–In2O3 nanocomposites on the sensitivity of thin-film sensors on their base. Mater Chem Phys 160:337–344. doi: 10.1016/j.matchemphys.2015.04.047 CrossRefGoogle Scholar
  20. 20.
    Kay A, Cesar I, Grätzel M (2006) New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J Am Chem Soc 128:15714–15721. doi: 10.1021/ja064380l CrossRefGoogle Scholar
  21. 21.
    Cesar I, Sivula K, Kay A et al (2009) Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. J Phys Chem C 113:772–782. doi: 10.1021/jp809060p CrossRefGoogle Scholar
  22. 22.
    Sorescu M, Diamandescu L, Tarabasanu-Mihaila D (2004) α-Fe2O3–In2O3 mixed oxide nanoparticles synthesized under hydrothermal supercritical conditions. J Phys Chem Solids 65:1719–1725. doi: 10.1016/j.jpcs.2004.05.002 CrossRefGoogle Scholar
  23. 23.
    Chu D, Masuda Y, Ohji T, Kato K (2010) Shape-controlled growth of In(OH)3/In2O3 nanostructures by electrodeposition. Langmuir 26:14814–14820. doi: 10.1021/la102255k CrossRefGoogle Scholar
  24. 24.
    Zhao C, Zhang G, Han W et al (2013) Electrospun In2O3/α-Fe2O3 heterostructure nanotubes for highly sensitive gas sensor applications. Cryst Eng Comm 15:6491. doi: 10.1039/c3ce40962g CrossRefGoogle Scholar
  25. 25.
    Dotan H, Mathews N, Hisatomi T et al (2014) On the solar to hydrogen conversion efficiency of photoelectrodes for water splitting. J Phys Chem Lett 5:3330–3334CrossRefGoogle Scholar
  26. 26.
    Kleiman-Shwarsctein A, Huda MN, Walsh A et al (2010) Electrodeposited aluminum-doped α-Fe2O3 photoelectrodes: experiment and theory. Chem Mater 22:510–517. doi: 10.1021/cm903135j CrossRefGoogle Scholar
  27. 27.
    Gurudayal Chiam SY, Kumar MH et al (2014) Improving the efficiency of hematite nanorods for photoelectrochemical water splitting by doping with manganese. ACS Appl Mater Interfaces 6:5852–5859. doi: 10.1021/am500643y CrossRefGoogle Scholar
  28. 28.
    Pham HT, Jeong HD (2015) Newly observed temperature and surface ligand dependence of electron mobility in indium oxide nanocrystals solids. ACS Appl Mater Interfaces 7:11660–11667. doi: 10.1021/acsami.5b02971 CrossRefGoogle Scholar
  29. 29.
    Martinez-Morillas R, Ramirez R, Sanchez-Marcos J et al (2014) Huge photoresistance in transparent and conductive indium titanium oxide films prepared by electron beam-physical vapor deposition. ACS Appl Mater Interfaces 6:1781–1787. doi: 10.1021/am404675n CrossRefGoogle Scholar
  30. 30.
    Oh I, Kye J, Hwang S (2012) Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode. Nano Lett 12:298–302. doi: 10.1021/nl203564s CrossRefGoogle Scholar
  31. 31.
    Kim JY, Magesh G, Youn DH et al (2013) Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting. Sci Rep 3:2681. doi: 10.1038/srep02681 Google Scholar
  32. 32.
    Ahmed MG, Kandiel TA, Ahmed AY et al (2015) Enhanced photoelectrochemical water oxidation on nanostructured hematite photoanodes via p-CaFe2O4/n-Fe2O3 heterojunction formation. J Phys Chem C 119:5864–5871. doi: 10.1021/jp512804p CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Key Laboratory for Anisotropy and Texture of Materials (MoE)Northeastern UniversityShenyangChina
  2. 2.School of Materials Science and EngineeringNortheastern UniversityShenyangChina

Personalised recommendations