Journal of Materials Science

, Volume 51, Issue 16, pp 7716–7730 | Cite as

Structural, thermal and antibacterial properties of polyamide 11/polymeric biocide polyhexamethylene guanidine dodecylbenzenesulfonate composites

  • Sergiy Rogalsky
  • Jean-Francois Bardeau
  • Hao Wu
  • Lyudmila Lyoshina
  • Olga Bulko
  • Oksana Tarasyuk
  • Stanislav Makhno
  • Tetiana Cherniavska
  • Yuriy Kyselov
  • Joseph H. Koo
Original Paper


Antimicrobial polyamide 11 (PA-11) films containing low-cost, thermally stable and water resistant polymeric biocide polyhexamethylene guanidine dodecylbenzenesulfonate (PHMG-DBS) have been obtained by compression moulding. The structure of the modified PA-11 films containing from 3 to 10 wt% of PHMG-DBS was characterized using Raman and FTIR spectroscopy and atomic force microscopy (AFM). The surface properties were evaluated both by contact angle and contactless inductive method. The introduction of PHMG-DBS into PA-11 films was found to increase positive surface charge density to 5.5·10−11 C/cm2 for 10 wt% of PHMG-DBS. Antibacterial activity of PA-11/PHMG-DBS films against both Gram-positive (Escherichia coli) and Gram-negative (Bacillus subtilis) bacteria was demonstrated for films containing from 5 to 7 wt% of polymeric biocide. According to thermal investigations data, PA-11/PHMG-DBS composite has excellent thermal stability to at least 390 °C both in air and in argon atmosphere which indicates on its availability for the melt processing by common methods. It has also been found that polymeric biocide is highly resistant to leaching from PA-11 film.


Biocide Surface Charge Density Excellent Thermal Stability Polyamide Resin Polyamide Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to Arkema (USA) for providing PA-11 samples.

Supplementary material

10853_2016_54_MOESM1_ESM.docx (322 kb)
Supplementary material 1 (DOCX 321 kb)


  1. 1.
    Kohan MI (1995) Nylon Plastics Handbook. Hanser Gardner Publications, New YorkGoogle Scholar
  2. 2.
    Arkema (2005) RILSAN® PA11: created from a renewable source (product data sheet). Arkema, PuteauxGoogle Scholar
  3. 3.
    Mason J (1998) Pipe liners for corrosive high-temperature oil and gas-production applications. Mater Perform 37:34–40Google Scholar
  4. 4.
    Dawans FA, Jarrin J, Lefevre TO, Pelisson M (1986) Improved thermoplastic materials for offshore flexible pipes. In: Proceedings of Offshore Technology Conference, OTC No. 5231-MS, HoustonGoogle Scholar
  5. 5.
    Arkema (2010) Fine powders: a durable coating for durable products (product data sheet). Arkema, ColombesGoogle Scholar
  6. 6.
    Klun U, Friedrich Z, Kržan A (2003) Polyamide 6 fibre degradation by a lignolytic fungus. Polym Degrad Stab 79:99–104CrossRefGoogle Scholar
  7. 7.
    Tomita K, Ikeda N, Ueno A (2003) Isolation and characterization of a thermophilic bacterium, Geobacillus thermocatenulatus, degrading nylon 12 and nylon 66. Biotechnol Lett 25:1743–1746CrossRefGoogle Scholar
  8. 8.
    Mohee R, Unmar G (2007) Determining biodegradability of plastic materials under controlled and natural composting environments. Waste Manag 27:1486–1493CrossRefGoogle Scholar
  9. 9.
    Al-Gelawi MH, Al-Saraf AA, Al-Baldawi RB (2013) Role of plasmid of Pseudomonas putida S3A in Nylon 6 degradation. J Biol Sci 13:555–558CrossRefGoogle Scholar
  10. 10.
    Chonde Sonal G, Chonde Sachin G, Raut PD (2013) Studies on degradation of synthetic polymer Nylon 6 and Nylon 6, 6 by Pseudomonas aeruginosa NCIM 2242. IJETCAS 4:362–369Google Scholar
  11. 11.
    Kaali P, Strömberg E, Karlsson S (2011) Prevention of biofilm associated infections and degradation of polymeric materials used in biomedical applications. In: Laskovski AN (ed) Biomedical engineering, trends in material science, vol Chapter 22. In Tech, Rijeka, pp 513–541Google Scholar
  12. 12.
    Ramachandran T, Rajendrakumar K, Rajendran R (2004) Antimicrobial textiles—an overview. Textile Eng 84:42–47Google Scholar
  13. 13.
    Nichols D (2005) Biocides in plastics. Rapra review reports, Rapra Technology, 15: Report 180Google Scholar
  14. 14.
    Kuratsuji T, Shimizu H (2003) Polyamide based antibacterial powder paint composition. US Patent 20030171452Google Scholar
  15. 15.
    Lapeyre A, Ganset C (2005) Polyamide-based powder and its use for obtaining an antibacterial coating. US Patent 8303970Google Scholar
  16. 16.
    Russel AD, Hugo WB (1994) Antimicrobial activity and action of silver. Prog Med Chem 31:351–370CrossRefGoogle Scholar
  17. 17.
    Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668CrossRefGoogle Scholar
  18. 18.
    Kumar R, Münstedt H (2005) Silver ion release from antimicrobial polyamide/silver composites. Biomater 26:2081–2088CrossRefGoogle Scholar
  19. 19.
    Damm C, Münstedt H, Rösch A (2007) Long-term antimicrobial polyamide 6/silver-nanocomposites. J Mater Sci 42:6067–6073CrossRefGoogle Scholar
  20. 20.
    Damm C, Münstedt H, Rösch A (2008) The antimicrobial efficacy of polyamide 6/silver-nano- and microcomposites. Mater Chem Phys 108:61–66CrossRefGoogle Scholar
  21. 21.
    Williams RL, Doherty PJ, Vince DJ, Grashoff GJ, Williams DF (1989) The biocompatibility of silver. Crit Rev Biocompat 5:221–223Google Scholar
  22. 22.
    Carmona-Ribeiro AM, de Melo Carrasco LD (2013) Cationic antimicrobial polymers and their assemblies. Int J Mol Sci 14:9906–9946CrossRefGoogle Scholar
  23. 23.
    Oulè MK, Azinwi R, Bernier AM, Kablan T, Maupertuis AM, Mauler S, Koffi- Nevry R, Dembèlè K, Forbes L, Diop L (2008) Polyhexamethylene guanidine hydrochloride-based disinfectant: a novel tool to fight meticillin-resistant Staphylococcus aureus and nosocomial infections. J Med Microbiol 57:1523–1528CrossRefGoogle Scholar
  24. 24.
    Mathurin YK, Koffi-Nevry R, Guéhi ST, Tano K, Oulé MK (2012) Antimicrobial activities of polyhexamethylene guanidine hydrochloride-based disinfectant against fungi isolated from cocoa beans and reference strains of bacteria. J Food Protect 75:1167–1171CrossRefGoogle Scholar
  25. 25.
    Qian L, Guan Y, He B, Xiao H (2008) Modified guanidine polymers: synthesis and antimicrobial mechanism revealed by AFM. Polymer 49:2471–2475CrossRefGoogle Scholar
  26. 26.
    Zhou Z, Wei D, Guan Y, Zheng A, Zhong J-J (2010) Damage of Escherichia coli membrane by bactericidal agent polyhexamethylene guanidine hydrochloride: micrographic evidences. J Appl Microbiol 108:898–907CrossRefGoogle Scholar
  27. 27.
    Zhou Z, Wei D, Guan Y, Zheng A, Zhong J-J (2011) Extensive in vitro activity of guanidine hydrochloride polymer analogs against antibiotics-resistant clinically isolated strains. Mater Sci Eng 31:1836–1843CrossRefGoogle Scholar
  28. 28.
    Kukharenko O, Bardeau J-F, Zaets I, Ovcharenko L, Tarasyuk O, Porhyn S, Mischenko I, Vovk A, Rogalsky S, Kozyrovska N (2014) Promising low cost antimicrobial composite material based on bacterial cellulose and polyhexamethylene guanidine hydrochloride. Eur Polym Jnl 60:247–254CrossRefGoogle Scholar
  29. 29.
    Nigmatullin R, Gao F, Konovalova V (2009) Permanent, non-leaching antimicrobial polyamide nanocomposites based on organoclays modified with a cationic polymer. Macromol Mater Eng 294:795–805CrossRefGoogle Scholar
  30. 30.
    Rogalskyy S, Bardeau J-F, Tarasyuk O, Fatyeyeva K (2012) Fabrication of new antifungal polyamide-12 material. Polym Int 61:686–691CrossRefGoogle Scholar
  31. 31.
    Faille C, Jullien C, Fontaine F, Bellon-Fontaine M-N, Slomianny C, Benezech T (2002) Adhesion of Bacillus spores and Escherichia coli cells to inert surfaces: role of surface hydrophobicity. Can J Microbiol 48:728–738CrossRefGoogle Scholar
  32. 32.
    Haghi AK, Zaikov GE (2013) Updates on polymer composites and fibers for advanced technologies. In: Zaikov GE, Lekishvili NG, Medvedevskikh YJ (eds) Multicomponent polymeric materials: from introduction to application. Apple Academic Press Inc, Point Pleasant, pp 169–173Google Scholar
  33. 33.
    Sedin VA, Yarovoi GP (1971) Measurement of surface charge and external field potential of an electret. Meas Tech 14:439–443CrossRefGoogle Scholar
  34. 34.
    Fatyeyeva K, Pud AA, Bardeau J-F, Tabellout M (2011) Structure–property relationship in aliphatic polyamide/polyaniline surface layered composites. Mater Chem Phys 130:760–768CrossRefGoogle Scholar
  35. 35.
    Marmur A (2006) Soft contact: measurement and interpretation of contact angles. Soft Matter 2:12–17CrossRefGoogle Scholar
  36. 36.
    An YH, Friedman RJ (1998) Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res 43:338–348CrossRefGoogle Scholar
  37. 37.
    Kügler R, Bouloussa O, Rondelez F (2005) Evidence of a charge-density threshold for optimum efficiency of biocidal cationic surfaces. Microbiology 151:1341–1348CrossRefGoogle Scholar
  38. 38.
    Lewis K, Klibanov AM (2005) Surpassing nature: rational design of sterile-surface materials. Trends Biotechnol 23:343–348CrossRefGoogle Scholar
  39. 39.
    Siedenbiedel F, Tiller JC (2012) Antimicrobial polymers in solution and on surfaces: overview and functional principles. Polymers 4:46–71CrossRefGoogle Scholar
  40. 40.
    Izmaylov B, Di Gioia D, Markova G, Aloisio I, Colonna M, Vasnev V (2015) Imidazolium salts grafted on cotton fibres for long-term antimicrobial activity. React Funct Polym 87:22–28CrossRefGoogle Scholar
  41. 41.
    Guo N, Hu D, Wang H, Wang R, Xiong Y (2013) Functional poly(ethylene terephthalate) materials prepared by condensation copolymerization with ionic liquids. Polym Bull 70:3031–3040CrossRefGoogle Scholar
  42. 42.
    Walczak M, Richert A, Burkowska-But A (2014) The effect of polyhexamethylene guanidine hydrochloride (PHMG) derivatives introduced into polylactide (PLA) on the activity of bacterial enzymes. J Ind Microbiol Biotechnol 41:1719–1724CrossRefGoogle Scholar
  43. 43.
    Gilbert P, Moore LE (2005) Cationic antiseptics: diversity of action under a common epithet. J Appl Microbiol 99:703–715CrossRefGoogle Scholar
  44. 44.
    Lee JC, Koo JH, Ezekoye OA, Erickson K (2009) Heating rate and nanoparticle loading effects on thermoplastic polyurethane elastomer nanocomposite kinetics. 41st AIAA Thermophysics Conference, San Antonio, TexasGoogle Scholar
  45. 45.
    Lyon RE, Walters RA (2002) A microscale combustion calorimeter, final report DOT/FAA/AR-01/117. NTIS, SpringfieldGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Sergiy Rogalsky
    • 1
  • Jean-Francois Bardeau
    • 2
  • Hao Wu
    • 3
  • Lyudmila Lyoshina
    • 4
  • Olga Bulko
    • 4
  • Oksana Tarasyuk
    • 1
  • Stanislav Makhno
    • 5
  • Tetiana Cherniavska
    • 5
  • Yuriy Kyselov
    • 1
  • Joseph H. Koo
    • 3
  1. 1.Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Science of UkraineKyivUkraine
  2. 2.Institut des Molécules et Matériaux du Mans, Université du Maine, Avenue Olivier MessiaenLe Mans Cedex 9France
  3. 3.The University of Texas at Austin, Texas Materials Institute/Center for Nano and Molecular Science and TechnologyAustinUSA
  4. 4.Institute of Cell Biology and Genetic Engineering of National Academy of Science of UkraineKyivUkraine
  5. 5.Chuiko Institute of Surface Chemistry of National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations