Journal of Materials Science

, Volume 51, Issue 16, pp 7636–7651 | Cite as

Magnetic, magnetocaloric properties, and critical behavior in a layered perovskite La1.4(Sr0.95Ca0.05)1.6Mn2O7

  • Arwa Belkahla
  • K. Cherif
  • J. Dhahri
  • E. K. Hlil
Original Paper


We report the results of magnetic, magnetocaloric properties, and critical behavior investigation of the double-layered perovskite manganite La1.4(Sr0.95Ca0.05)1.6Mn2O7. The compounds exhibits a paramagnetic (PM) to ferromagnetic (FM) transition at the Curie temperature T C = 248 K, a Neel transition at T N = 180 K, and a spin glass behavior below 150 K. To probe the magnetic interactions responsible for the magnetic transitions, we performed a critical exponent analysis in the vicinity of the FM–PM transition range. Magnetic entropy change (−∆S M) was estimated from isothermal magnetization data. The critical exponents β and γ, determined by analyzing the Arrott plots, are found to be T C = 248 K, β = 0.594, γ = 1.048, and δ = 2.764. These values for the critical exponents are close to the mean-field values. In order to estimate the spontaneous magnetization M S(T) at a given temperature, we use a process based on the analysis, in the mean-field theory, of the magnetic entropy change (−∆S M) versus the magnetization data. An excellent agreement is found between the spontaneous magnetization determined from the entropy change [(−∆S M) vs. M 2] and the classical extrapolation from the Arrott curves (µ0H/M vs. M 2), thus confirming that the magnetic entropy is a valid approach to estimate the spontaneous magnetization in this system and in other compounds as well.


Mn2O7 Manganite Critical Exponent Magnetic Phase Transition Spontaneous Magnetization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Compliance with ethical standards

Conflict of interest

The authors (Arwa. Belkahla, K. Cherif, J. Dhahri, E. K. Hlil) declare that they have no conflict of interest.


  1. 1.
    Gschneidner KA Jr, Pecharsky VK, Tsokol AO (2005) Recent developments in magnetocaloric materials. Rep Prog Phys 68:1479–1539CrossRefGoogle Scholar
  2. 2.
    Zimm C, Jastrab A, Sternberg A, Pecharsky V, Gschneidner KA Jr, Osborne M, Anderson I (1998) Description and performance of a near-room temperature magnetic refrigerator. Adv Cryog Eng 43:1759–1766CrossRefGoogle Scholar
  3. 3.
    Pecharsky VK, Gschneider KA (1999) Magnetocaloric effect and magnetic refrigeration. J Magn Magn Mater 200:44–46CrossRefGoogle Scholar
  4. 4.
    Bruck E (2005) Developments in magnetocaloric refrigeration. J Phys D: Appl Phys 38:R381–R391CrossRefGoogle Scholar
  5. 5.
    Das S, Dey TK (2007) Magnetic entropy change in polycrystalline La1-xKxMnO3 perovskites. J Alloys Compd 440(1–2):30–35CrossRefGoogle Scholar
  6. 6.
    Sheik MM, Sudheendra L, Rao CNR (2004) Magnetic properties of La0.5-xLnxSr0.5MnO3 (Ln = Pr, Nd, Gd and Y). J Solid State Chem 177(10):3633–3639CrossRefGoogle Scholar
  7. 7.
    Phan MH, Yu SC (2007) Review of the magnetocaloric effect in manganite materials. J Magn Magn Mater 308(2):325–340CrossRefGoogle Scholar
  8. 8.
    Amano ME, Betancourt I, Sánchez Llamazares JL, Huerta L, Sánchez-Valdés CF (2014) Mixed-valence La0.80(Ag1−xSrx)0.20MnO3 manganites with magnetocaloric effect. J Mater Sci 49:633–641. doi: 10.1007/s10853-013-7743-5 CrossRefGoogle Scholar
  9. 9.
    Phan MH, Tian SB, Yu SC, Ulyanov AN (2003) Magnetic and magnetocaloric properties of La0.7Ca0.3-xBaxMnO3 compounds. J Magn Magn Mater 256(1–3):306–310CrossRefGoogle Scholar
  10. 10.
    Tian SB, Phan MH, Yu SC, HwiHur N (2003) Magnetocaloric effect in a La0.7Ca0.3MnO3 single crystal. Phys B 327(2–4):221–224CrossRefGoogle Scholar
  11. 11.
    Shao MJ, Cao SX, Wang YB, Yuan SJ, Kang BJ, Zhang JC (2012) Large magnetocaloric effect in HoFeO3 single crystal. Solid State Commun 152:947–950CrossRefGoogle Scholar
  12. 12.
    Ben Jemaa F, Mahmood S, Ellouze M, Hlil EK, Halouani F (2015) Structural, magnetic, and magnetocaloric studies of La0.67Ba0.22Sr0.11Mn1−xCoxO3 manganites. J Mater Sci 50:620–633. doi: 10.1007/s10854-015-3085-1 CrossRefGoogle Scholar
  13. 13.
    Sebald G, Pruvost S, Seveyrat L, Lebrun L, Guyomar D, Guiffard B (2007) Electrocaloric properties of high dielectric constant ferroelectric ceramics. J Eur Ceram Soc 27:4021CrossRefGoogle Scholar
  14. 14.
    Pamir Alpay S, Mantese Joseph, Trolier-McKinstry Susan, Zhang Qiming, Whatmore Roger W (2014) Next-generation electrocaloric and pyroelectric materials for solid-state electrothermal energy interconversion. MRS Bull 39:1099–1108CrossRefGoogle Scholar
  15. 15.
    Fawcett ID, Kim E, Greenblatt M, Croft M, Bendersky LA (2000) Properties of the electron-doped layered manganites La2-2xCa1+2xMn2O7 (0.6 ≤ x ≤ 1.0). Phys Rev B 62:6485–6495CrossRefGoogle Scholar
  16. 16.
    Li JQ, Jin CQ, Zhao HB (2001) Structural and physical properties of double-layered manganites La2-2xCa1+2xMn2O7 with 0.5 ≤ x ≤ 1.0. Phys Rev B 64:020405(R)CrossRefGoogle Scholar
  17. 17.
    Allodi G, Bimbi M, De Renzi R, Baumann C, Apostu M, Suryanarayanan R, Revcolevschi A (2008) Magnetic order in the double-layer manganites (La1-zPrz)1.2Sr1.8Mn2O7: intrinsic properties and role of intergrowth. Phys Rev B 78:064420–064430CrossRefGoogle Scholar
  18. 18.
    Ramirez AP (1997) Colossal magnetoresistance. J Phys: Condens Matter 9:8171–8199Google Scholar
  19. 19.
    Kumaresavanji M, Saitovitch EMB, Araujo JP, Fontes MB (2013) Pressure-enhanced ferromagnetism and metallicity in La1.24Sr1.76Mn2O7 bilayered manganite system. J Mater Sci 48:1324–1329. doi: 10.1007/s10853-012-6877-1 CrossRefGoogle Scholar
  20. 20.
    Zener C (1951) Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys Rev 82:403CrossRefGoogle Scholar
  21. 21.
    Gor’kov LP, Kresin VZ (2004) Mixed-valence manganites: fundamentals and main properties. Phys Rep 400:149–208CrossRefGoogle Scholar
  22. 22.
    Millis AJ, Littlewood PB, Shraiman BI (1995) Double exchange alone does not explain the resistivity of La1-xSrxMnO3. Phys Rev Lett 745:144Google Scholar
  23. 23.
    Han L, Chen C (2010) Magnetocaloric and colossal magnetoresistance effect in layered perovskite La1.4Sr1.6Mn2O7. J Mater Sci Technol 26:234–236. doi: 10.1016/j.ssc.2003.12.037 CrossRefGoogle Scholar
  24. 24.
    Wang A, Cao G, Liu Y, Long Y, Li Y, Feng Z, Ross JH (2005) Magnetic entropy change of the layered perovskites La2-2xSr1+2xMn2O7. J Appl Phys 97:103906CrossRefGoogle Scholar
  25. 25.
    Cherif K, Zemni S, Dhahri J, Oumezzine M, Said M, Vincent H (2007) Magnetocaloric effect in layered perovskite manganese oxide La1.4(Sr1-xBax)1.6Mn2O7 (0 ≤ x ≤ 0.6) bulk materials. J Alloys Compd 432:30–33CrossRefGoogle Scholar
  26. 26.
    Zhu H, Song H, Zhang YH (2002) Magnetocaloric effect in layered perovskite manganese oxide La1.4Ca1.6Mn2O7. Appl Phys Lett 8(1):3416–3419CrossRefGoogle Scholar
  27. 27.
    Tetean R, Himcinschi C, Burzo E (2008) Magnetic properties and magnetocaloric effect in La1.4-xRxCa1.6Mn2O7 compounds with R. J Optoelectron Adv Mater 10:849–852Google Scholar
  28. 28.
    Zhao X, Chen W, Zong Y, Diao SL, Yan XJ, Zhu MG (2009) Structure, magnetic and magnetocaloric properties in La1.4Sr1.6-xCaxMn2O7 perovskite compounds. J Alloys Compd 469:61–65CrossRefGoogle Scholar
  29. 29.
    Arwa Belkahla K, Cherif JD, Hlil EK (2015) Structural and optical properties of the Ruddlesden-Popper La1.4(Sr0.95Ca0.05)1.6Mn2O7 sample prepared by a sol-gel method. J Super Nov Magn 29:19–27CrossRefGoogle Scholar
  30. 30.
    Ma Y, Dong QY, Ke YJ, Wu YD, Zhang XQ, Wang LC, Shen BG, Sun JR, Cheng ZH (2015) Eu doping-induced enhancement of magnetocaloric effect in manganite La1.4Ca1.6Mn2O7. Solid State Commun 208:25–28CrossRefGoogle Scholar
  31. 31.
    Dudric R, Goga F, Mican S, Tetean R (2013) Effects of substitution of PR, Nd, and Sm for La on the magnetic properties and magnetocaloric effect of La1.4Ca1.6Mn2O7. J Alloy Compd 553:129–134CrossRefGoogle Scholar
  32. 32.
    Yang J, Song WH, Ma YQ, Zhang RL, Zhao BC, Sheng ZG, Zheng GH, Dai JM, Sun YP (2004) Structural, magnetic, and transport properties in the Pr-doped manganites La0.9-xPrxTe0.1MnO3 (0 ≤ x ≤ 0.9). Phys Rev B 70:144421CrossRefGoogle Scholar
  33. 33.
    Dho J, Kim WS, Hur XH (2002) Reentrant spin glass behavior in Cr-doped perovskite manganite. Phys Rev Lett 89:027202(1–4)CrossRefGoogle Scholar
  34. 34.
    Shen CH, Liu RS, Hu SF, Huang CY, Sheu HS (1999) Structural, electrical and magnetic properties of two-dimensional La1.2(Sr1.8-xCax)Mn2O7 manganites. J Appl Phys 86:2178–2184CrossRefGoogle Scholar
  35. 35.
    Philipp JB, Klein J, Recher C, Walther T, Mader W, Schmid M, Suryanarayanan R, Alff L, Gross R (2002) Microstructure and magnetoresistance of epitaxial films of the layered perovskite La2-2xSr1+2xMn2O7 (x = 0.3 and 0.4). Phys Rev B 65:184411-1CrossRefGoogle Scholar
  36. 36.
    Chatterji T, Koza MM, Demmel F, Schmidt W, Aman U, Schneider R, Dhalenne G, Suryanarayanan R, Revcolevschi A (2006) Coexistence of ferromagnetic and antiferromagnetic spin correlations in La1.2Sr1.8Mn2O7. Phys Rev B 73:10449(1–6)Google Scholar
  37. 37.
    Zhou TJ, Yu Z, Zhong W, Xu XN, Zhang HH, Du YW (1999) Larger magnetocaloric effect in two-layered La1.6Ca1.4Mn2O7 polycrystal. J Appl Phys 85:7975–7977CrossRefGoogle Scholar
  38. 38.
    Liniers M, Flores J, Bermejo FJ, Gonzalez JM, Vicent JL, Tejada J (1989) Systematic study of the temperature dependence of the saturation magnetization in Fe, Fe-Ni and Co-based amorphs alloys. IEEE Trans Magn 25:3363CrossRefGoogle Scholar
  39. 39.
    Padmanabhan B, Elizabeth S, Bhat HL, Rosler S, Dorr K, Muller KH (2006) Crystal growth, transport and magnetic properties of rare-earth manganite Pr1-xPbxMnO3. J Magn Magn Mater 307:288–294CrossRefGoogle Scholar
  40. 40.
    Ghosh N, Elizabeth S, Bhat HL, Rossler UK, Nenkov K, Rossler S, Dorr K, Muller K-H (2004) Effect of rare-earth-site cations on the physical properties of La0.7-yNdyPb0.3MnO3 single crystals. Phys Rev B 70:184436CrossRefGoogle Scholar
  41. 41.
    Kittel C (1993) Quantum theory of solids. Wiley, New YorkGoogle Scholar
  42. 42.
    Oubla M, Lamire M, Lassri H, Hlil EK (2013) Structural and magnetic properties of layered perovskite manganite LaCaBiMn2O7.MATEC Web of Conference, vol 5, p 04040Google Scholar
  43. 43.
    Katsuki A, Wolhfarth EP (1966) Spin waves and their stability in metals. Proc R Soc A 295:182–191CrossRefGoogle Scholar
  44. 44.
    Banerjee BK (1964) On a generalized approach to first and second order magnetic transitions. Phys Lett 12:16–17CrossRefGoogle Scholar
  45. 45.
    Hashimoto T, Numasawa T, Shino M, Okada T (1981) Magnetic refrigeration in the temperature range from 10 K to room temperature: the ferromagnetic refrigerants. Cryogenics 21:647–653CrossRefGoogle Scholar
  46. 46.
    Biswas A, Samanta T, Babarjee S, Das I (2009) Inverse magnetocaloric effect in polycrystalline La0.125Ca0.875MnO3. J Phys: Condens Matter 21:506005(1-3)Google Scholar
  47. 47.
    Ben Amor N, Bejar M, Hussein M, Dhahri E, Valente MA, Hlil EK (2013) Magnetocaloric effect in the vicinity of second order antiferromagnetic transition of Er2Mn2O7 compound at different applied magnetic field. J Alloys Compd 563:28–32CrossRefGoogle Scholar
  48. 48.
    Zhou KW, Zhuang YH, Li JQ, Deng JQ, Zhu QM (2006) Magnetocaloric effects in (Gd1-xTbx)Co2. Solid State Commun 137:275–277CrossRefGoogle Scholar
  49. 49.
    Giri SK, Dasgupta P, Poddar A, Sahoo RC, Paladhi D, Nath TK (2015) Strain modulated large magnetocaloric effect in Sm0.55Sr0.45MnO3 epitaxial films. J Appl Phys Lett 106:023507(1-5)CrossRefGoogle Scholar
  50. 50.
    Dudric R, Goga F, Neumann M, Mican S, Tetean R (2012) Magnetic properties and magnetocaloric effect in La1.4-xCexCa1.6Mn2O7 perovskites synthesized by sol-gel method. J Mater Sci 47:3125–3130. doi: 10.1007/s10853-011-6146-8 CrossRefGoogle Scholar
  51. 51.
    Rostamnejadi A, Venkatesan M, Kameli P, Salamati H, Coey JMD (2011) Magnetocaloric effect in La0.67Sr0.33MnO3 manganite above room temperature. J Magn Magn Mater 323:2214–2218CrossRefGoogle Scholar
  52. 52.
    Yang H, Zhu YH, Xian T, Jiang JL (2013) Synthesis and magnetocaloric properties of La0.7Ca0.3MnO3 nanoparticles with different sizes. J Alloys Compd 555:150–155CrossRefGoogle Scholar
  53. 53.
    Zhong W, Chen W, Ding WP, Zhang N, Hu A, Du YW, Yan QJ (1998) Strcuture, composition and magnetocaloric properties in polycrystalline La1-xAxMnO3+δ (A = Na, K). Eur Phys J B 3:169CrossRefGoogle Scholar
  54. 54.
    Landau LD, Lifshitz EM (1958) Statistical physics. Pergamon, New YorkGoogle Scholar
  55. 55.
    Amaral JS, Reis MS, Amaral VS, Mendonça TM, Araujo JP, Sa MA, Tavares PB, Vieira JM (2005) Magnetocaloric effect in Er-and Eu-substituted ferromagnetic La-Sr manganites. J Magn Magn Mater 290–291:686–689CrossRefGoogle Scholar
  56. 56.
    Amaral VS, Amaral JS (2004) Magnetoelastic coupling influence on the magnetocaloric effect in ferromagnetic materials. J Magn Magn Mater 272–276:2104–2105CrossRefGoogle Scholar
  57. 57.
    Levy LP (2000) Magnetism and superconductivity. Springer, BerlinCrossRefGoogle Scholar
  58. 58.
    Bebenin NG, Zainullina RI, Ustinov VV, Mukovskii Ya M (2012) Effect of inhomogeneity on magnetic, magnetocaloric, and magnetotransport properties of La0.6Pr0.1Ca0.3MnO3 single crystal. J Magn Magn Mater 324:1112–1116CrossRefGoogle Scholar
  59. 59.
    Cherif R, Hlil EK, Ellouze M, Elhalouani F, Obbade S (2014) Study of magnetic and magnetocaloric properties of La0.6Pr0.1Ba0.3MnO3 and La0.6Pr0.1Ba0.3Mn0.9Fe0.1O3 perovskite-type manganese oxides. J Mater Sci 49:8244–8251. doi: 10.1007/s10853-014-8533-4 CrossRefGoogle Scholar
  60. 60.
    Franco V, Blazquez JS, Conde A (2008) Influence of Ge addition on the magnetocaloric effect of a Co-containing nanoperm-type alloy. J Appl Phys 103:07B316–07B321Google Scholar
  61. 61.
    Bonilla CM, ALbillos JH, Bartolome F, Garcia LM, Borderias MP, Franco V (2010) Universal behavior for magnetic entropy change in magnetocaloric materials: an analysis on the nature of phase transitions. Phys Rev B 81:224424–224431CrossRefGoogle Scholar
  62. 62.
    Pecharsky AO, Pecharsky VK, Gschneidner KA (2003) The giant magnetocaloric effect of optimally prepared Gd5Si2Ge2. J Appl Phys 93:4722–4728CrossRefGoogle Scholar
  63. 63.
    Pekala M (2010) Magnetic field dependence of magnetic entropy change in nanocrystalline and polycrystalline managnites La1-xMxMnO3 (M = Ca, Sr). J Appl Phys 108:113913–1139134CrossRefGoogle Scholar
  64. 64.
    Dong QY, Zhang HW, Sun JR, Shen BG, Franco V (2008) A phenomenological fitting curve for the magnetocaloric effect of materials with a second-order phase transition. J Appl Phys 103:116101CrossRefGoogle Scholar
  65. 65.
    Franco V, Conde CF, Conde A, Kiss LF (2007) Enhanced magnetocaloric response in Cr/Mo containing nanoperm-type amorphous alloys. Appl Phys Lett 90:052509CrossRefGoogle Scholar
  66. 66.
    Oesterreicher H, Parker FT (1984) Magnetic cooling near Curie tempertaures above 300K. J Appl Phys 55:4334CrossRefGoogle Scholar
  67. 67.
    Moutis N, Panagiotopoulos I, Pissas M, Niarchos D (1999) Structural and magnetic propeties of La0.67(BaxCa1-x)0.33MnO3 perovskites (0 < ~x < ~1). Phys Rev B 59:1129–1138CrossRefGoogle Scholar
  68. 68.
    Yang J, Lee YP (2007) Critical behavior in Ti-doped manganites LaMn1-xTixO3 (0.05 <= x <= 0.2). Appl Phys Lett 91:142512CrossRefGoogle Scholar
  69. 69.
    Xuebin Z, Shixue D (2010) Crossover of critical behavior in La0.7Ca0.3Mn1-xTixO3. J Magn Magn Mater 322:242–256CrossRefGoogle Scholar
  70. 70.
    Kim D, Revaz B, Zink BL, Hellman F, Rhyne JJ, Mitchell JF (2002) Tricritical point and the doping dependence of the order of the ferromagnetic phase transitions of La1-xCaxMnO3. Phys Rev Lett 89:227202–227205CrossRefGoogle Scholar
  71. 71.
    Kouvel JS, Fisher ME (1964) Detailed magnetic behavior of nickel near its Curie point. Phys Rev 136:A1626–A1632CrossRefGoogle Scholar
  72. 72.
    Fisher ME, Ma SK, Nickel BG (1972) Critical exponents for long-range interactions. Phys Rev Lett 29:917–920CrossRefGoogle Scholar
  73. 73.
    Widom B (1965) Equation of state in the neighborhood of the critical point. J Chem Phys 43:3898–3905CrossRefGoogle Scholar
  74. 74.
    Shin HS, Lee JE, Nam YS, Ju HL, Park CW (2001) First-order-like magnetic transition in manganite oxide La0.7Ca0.3MnO3. Solid State Commun 118:377CrossRefGoogle Scholar
  75. 75.
    Franco V, Conde A, Romero EJM, Blazquez JS (2008) A universal curve for the magnetocaloric effect: an analysis based on scaling relations. J Phys: Condens Matter 20:285207Google Scholar
  76. 76.
    Eugene Stanley H (1971) Introduction to phase transitions and critical phenomena (International Series of Monographs on Physics). Oxford University Press, New YorkGoogle Scholar
  77. 77.
    Tishin AM, Spichin YI (2003) The magnetocaloric effect and its applications. IOP Publishing, LondonCrossRefGoogle Scholar
  78. 78.
    Amaral JS, Silva NJO, Amaral VS (2010) Estimating spontaneous magnetization from a mean field analysis of the magnetic entropy change. J Magn Magn Mater 322:1569CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Arwa Belkahla
    • 1
  • K. Cherif
    • 1
  • J. Dhahri
    • 1
  • E. K. Hlil
    • 2
  1. 1.Département de Physique, Faculté des Sciences de MonastirLaboratoire de la matière condensée et des nanosciencesMonastirTunisia
  2. 2.Institut NeelCNRS et Université Joseph FourierGrenobleFrance

Personalised recommendations