Journal of Materials Science

, Volume 51, Issue 15, pp 7276–7285 | Cite as

Structural and plasmonic characteristics of sputtered SnO2:Sb and ZnO:Al thin films as a function of their thickness

Original Paper


Heavily doped metal oxide semiconductors are being developed as thin film transparent electrodes for many applications and their deposition at low substrate temperature can extend the use on heat sensitive devices. The structural and electro-optical characteristics of such metal oxide coatings are tightly related and depend on the specific deposition parameters apart from the material composition. In this work, SnO2:Sb (ATO) and ZnO:Al (AZO) thin films have been prepared by sputtering at room temperature on glass substrates, changing the deposition time to obtain various layer thicknesses from 0.2 to 0.9 μm; and they have been analyzed by X-ray diffraction, spectrophotometry, and Hall-effect measurements. ATO samples crystallize in the tetragonal structure with mean crystallite size increasing from 8 to 20 nm when the film thickness grows. The comparison of Hall mobility and optical mobility values indicates a significant contribution of grain boundary scattering for these ATO layers. Otherwise, AZO films show larger crystallites (21–27 nm) and a strong preferential orientation for analogous thickness increment, resulting in a lower contribution of the grain boundary scattering to the overall Hall mobility. The in-grain mobility for each sample is also related to the respective crystallite size and carrier concentration values.


SnO2 Crystallite Size Carrier Concentration Hall Mobility Texture Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by the Madrid Community through the OMEGA-CM program, ref. S2013/MAE-2835.


  1. 1.
    Granqvist CG (2007) Transparent conductors as solar energy materials: a panoramic review. Sol Energy Mater Sol Cells 91:1529–1598. doi: 10.1016/j.solmat.2007.04.031 CrossRefGoogle Scholar
  2. 2.
    Ellmer K (2012) Past achievements and future challenges in the development of optically transparent electrodes. Nat Photonics 6:808–816. doi: 10.1038/nphoton.2012.282 CrossRefGoogle Scholar
  3. 3.
    Ohodnicki PR, Wang C, Andio M (2013) Plasmonic transparent conducting metal oxide nanoparticles and nanoparticle films for optical sensing applications. Thin Solid Films 539:327–336. doi: 10.1016/j.tsf.2013.04.145 CrossRefGoogle Scholar
  4. 4.
    Runnerstrom EL, Llordés A, Lounis SD, Milliron DJ (2014) Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals. Chem Commun 50:10555. doi: 10.1039/C4CC03109A CrossRefGoogle Scholar
  5. 5.
    Kílíç C, Zunger A (2002) Origins of coexistence of conductivity and transparency in SnO2. Phys Rev Lett 88:095501. doi: 10.1103/PhysRevLett.88.095501 CrossRefGoogle Scholar
  6. 6.
    Lany S, Zunger A (2007) Dopability, intrinsic conductivity, and nonstoichiometry of transparent conducting oxides. Phys Rev Lett 98:2–5. doi: 10.1103/PhysRevLett.98.045501 CrossRefGoogle Scholar
  7. 7.
    Ellmer K (2001) Resistivity of polycrystalline zinc oxide films: current status and physical limit. J Phys D 34:3097–3108. doi: 10.1088/0022-3727/34/21/301 CrossRefGoogle Scholar
  8. 8.
    Sernelius BE, Berggren KF, Jin ZC et al (1988) Band-gap tailoring of ZnO by means of heavy Al doping. Phys Rev B 37:244–248. doi: 10.1103/PhysRevB.37.10244 Google Scholar
  9. 9.
    Franzen S (2008) Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold. J Phys Chem C 112:6027–6032. doi: 10.1021/jp7097813 CrossRefGoogle Scholar
  10. 10.
    Losego MD, Efremenko AY, Rhodes CL et al (2009) Conductive oxide thin films: model systems for understanding and controlling surface plasmon resonance. J Appl Phys 106:24903. doi: 10.1063/1.3174440 CrossRefGoogle Scholar
  11. 11.
    West PR, Ishii S, Naik GV et al (2010) Searching for better plasmonic materials. Laser Photon Rev 4:795–808. doi: 10.1002/lpor.200900055 CrossRefGoogle Scholar
  12. 12.
    Wang F, Wu MZ, Wang YY et al (2013) Influence of thickness and annealing temperature on the electrical, optical and structural properties of AZO thin films. Vacuum 89:127–131. doi: 10.1016/j.vacuum.2012.02.040 CrossRefGoogle Scholar
  13. 13.
    Yang W, Yu S, Zhang Y, Zhang W (2013) Properties of Sb-doped SnO2 transparent conductive thin films deposited by radio-frequency magnetron sputtering. Thin Solid Films 542:285–288. doi: 10.1016/j.tsf.2013.06.077 CrossRefGoogle Scholar
  14. 14.
    Rahmane S, Aida MS, Djouadi MA, Barreau N (2015) Effects of thickness variation on properties of ZnO: Al thin films grown by RF magnetron sputtering deposition. Superlattices Microstruct 79:148–155. doi: 10.1016/j.spmi.2014.12.001 CrossRefGoogle Scholar
  15. 15.
    Lu JG, Ye ZZ, Zeng YJ et al (2006) Structural, optical, and electrical properties of (Zn, Al)O films over a wide range of compositions. J Appl Phys 100:073714. doi: 10.1063/1.2357638 CrossRefGoogle Scholar
  16. 16.
    Chen Y-Y, Hsu J-C, Lee C-Y, Wang PW (2013) Influence of oxygen partial pressure on structural, electrical, and optical properties of Al-doped ZnO film prepared by the ion beam co-sputtering method. J Mater Sci 48:1225–1230. doi: 10.1007/s10853-012-6863-7 CrossRefGoogle Scholar
  17. 17.
    Jiang X, Jia CL, Szyszka B (2002) Manufacture of specific structure of aluminum-doped zinc oxide films by patterning the substrate surface. Appl Phys Lett 80:3090. doi: 10.1063/1.1473683 CrossRefGoogle Scholar
  18. 18.
    Körber C, Suffner J, Klein A (2010) Surface energy controlled preferential orientation of thin films. J Phys D 43:055301. doi: 10.1088/0022-3727/43/5/055301 CrossRefGoogle Scholar
  19. 19.
    Montero J, Herrero J, Guillén C (2010) Preparation of reactively sputtered Sb-doped SnO2 thin films: structural, electrical and optical properties. Sol Energy Mater Sol Cells 94:612–616. doi: 10.1016/j.solmat.2009.12.008 CrossRefGoogle Scholar
  20. 20.
    Boltz J, Koehl D, Wuttig M (2010) Low temperature sputter deposition of SnOx:Sb films for transparent conducting oxide applications. Surf Coat Technol 205:2455–2460. doi: 10.1016/j.surfcoat.2010.09.048 CrossRefGoogle Scholar
  21. 21.
    Kim H, Piqué A (2004) Transparent conducting Sb-doped SnO2 thin films grown by pulsed-laser deposition. Appl Phys Lett 84:218. doi: 10.1063/1.1639515 CrossRefGoogle Scholar
  22. 22.
    Guglielmi M, Menegazzo E, Materiali S et al (1998) Sol-gel deposited Sb-doped tin oxide films. J Sol Gel Sci Technol 13:679–683. doi: 10.1007/BF00486329 CrossRefGoogle Scholar
  23. 23.
    Kim JS, Jeong JH, Park JK et al (2012) Optical analysis of doped ZnO thin films using nonparabolic conduction-band parameters. J Appl Phys 111:123507. doi: 10.1063/1.4729571 CrossRefGoogle Scholar
  24. 24.
    Bissig B, Jäger T, Ding L et al (2015) Limits of carrier mobility in Sb-doped SnO2 conducting films deposited by reactive sputtering. APL Mater 3:062802. doi: 10.1063/1.4916586 CrossRefGoogle Scholar
  25. 25.
    Brehme S, Fenske F, Fuhs W et al (1999) Free-carrier plasma resonance effects and electron transport in reactively sputtered degenerate ZnO:Al films. Thin Solid Films 342:167–173. doi: 10.1016/S0040-6090(98)01490-4 CrossRefGoogle Scholar
  26. 26.
    So HS, Park J-W, Jung DH et al (2015) Optical properties of amorphous and crystalline Sb-doped SnO2 thin films studied with spectroscopic ellipsometry: optical gap energy and effective mass. J Appl Phys 118:085303. doi: 10.1063/1.4929487 CrossRefGoogle Scholar
  27. 27.
    Montero J, Guillén C, Herrero J (2011) Discharge power dependence of structural, optical and electrical properties of DC sputtered antimony doped tin oxide (ATO) films. Sol Energy Mater Sol Cells 95:2113–2119. doi: 10.1016/j.solmat.2011.03.009 CrossRefGoogle Scholar
  28. 28.
    Guillén C, Herrero J (2006) High conductivity and transparent ZnO:Al films prepared at low temperature by DC and MF magnetron sputtering. Thin Solid Films 515:640–643. doi: 10.1016/j.tsf.2005.12.227 CrossRefGoogle Scholar
  29. 29.
    Bindu K, Nair PK (2004) Semiconducting tin selenide thin films prepared by heating Se–Sn layers. Semicond Sci Technol 19:1348–1353. doi: 10.1088/0268-1242/19/12/003 CrossRefGoogle Scholar
  30. 30.
    Giusti G, Consonni V, Puyoo E, Bellet D (2014) High performance ZnO-SnO2:F nanocomposite transparent electrodes for energy applications. ACS Appl Mater Interfaces 6:14096–14107. doi: 10.1021/am5034473 CrossRefGoogle Scholar
  31. 31.
    Xu Y, Cai Y, Hou L, Ma P (2014) Effect of Al doping concentration on microstructure, photoelectric properties and doped mechanism of AZO films. Surf Rev Lett 21:1450040. doi: 10.1142/S0218625X14500401 CrossRefGoogle Scholar
  32. 32.
    Chen Z-W, Shek C-H, Wu CML, Lai JKL (2013) Recent research situation in tin dioxide nanomaterials: synthesis, microstructures, and properties. Front Mater Sci 7:203–226. doi: 10.1007/s11706-013-0209-5 CrossRefGoogle Scholar
  33. 33.
    Jun M-C, Park S-U, Koh J-H (2012) Comparative studies of Al-doped ZnO and Ga-doped ZnO transparent conducting oxide thin films. Nanoscale Res Lett 7:639. doi: 10.1186/1556-276X-7-639 CrossRefGoogle Scholar
  34. 34.
    Janssen GCAM (2007) Stress and strain in polycrystalline thin films. Thin Solid Films 515:6654–6664. doi: 10.1016/j.tsf.2007.03.007 CrossRefGoogle Scholar
  35. 35.
    Detor AJ, Hodge AM, Chason E et al (2009) Stress and microstructure evolution in thick sputtered films. Acta Mater 57:2055–2065. doi: 10.1016/j.actamat.2008.12.042 CrossRefGoogle Scholar
  36. 36.
    Michotte S, Proost J (2012) In situ measurement of the internal stress evolution during sputter deposition of ZnO:Al. Sol Energy Mater Sol Cells 98:253–259. doi: 10.1016/j.solmat.2011.11.013 CrossRefGoogle Scholar
  37. 37.
    Rahal A, Benhaoua A, Bouzidi C et al (2014) Effect of antimony doping on the structural, optical and electrical properties of SnO2 thin films prepared by spray ultrasonic. Superlattices Microstruct 76:105–114. doi: 10.1016/j.spmi.2014.09.024 CrossRefGoogle Scholar
  38. 38.
    Jäger S, Szyszka B, Szczyrbowski J, Bräuer G (1998) Comparison of transparent conductive oxide thin films prepared by a.c. and d.c. reactive magnetron sputtering. Surf Coat Technol 98:1304–1314. doi: 10.1016/S0257-8972(97)00145-X CrossRefGoogle Scholar
  39. 39.
    Look DC (1999) Dislocation scattering in GaN. Phys Rev Lett 82:1237–1240. doi: 10.1103/PhysRevLett.82.1237 CrossRefGoogle Scholar
  40. 40.
    Weng X, Goldman RS, Partin DL, Heremans JP (2000) Evolution of structural and electronic properties of highly mismatched InSb films. J Appl Phys 88:6276. doi: 10.1063/1.1324702 CrossRefGoogle Scholar
  41. 41.
    Mun H, Yang H, Park J et al (2015) High electron mobility in epitaxial SnO2-x in semiconducting regime. APL Mater 3:076107. doi: 10.1063/1.4927470 CrossRefGoogle Scholar
  42. 42.
    Miyamoto K, Sano M, Kato H, Yao T (2004) High-electron-mobility ZnO epilayers grown by plasma-assisted molecular beam epitaxy. J Cryst Growth 265:34–40. doi: 10.1016/j.jcrysgro.2004.01.035 CrossRefGoogle Scholar
  43. 43.
    Minami T, Sato H, Nanto H, Takata S (1985) Group III impurity doped zinc oxide thin films prepared by RF magnetron sputtering. Jpn J Appl Phys 24:L781–L784. doi: 10.1143/JJAP.24.L781 CrossRefGoogle Scholar
  44. 44.
    Steinhauser J, Faÿ S, Oliveira N et al (2007) Transition between grain boundary and intragrain scattering transport mechanisms in boron-doped zinc oxide thin films. Appl Phys Lett 90:30–33. doi: 10.1063/1.2719158 CrossRefGoogle Scholar
  45. 45.
    Nahm C, Shin S, Lee W et al (2013) Electronic transport and carrier concentration in conductive ZnO:Ga thin films. Curr Appl Phys 13:415–418. doi: 10.1016/j.cap.2012.09.004 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Dep. Energía (CIEMAT)MadridSpain

Personalised recommendations