Journal of Materials Science

, Volume 51, Issue 8, pp 4002–4020 | Cite as

Low-temperature and alkali-free dual template synthesis of micro-mesoporous aluminosilicates based on precursors of zeolite ZSM-5

  • Roman Barakov
  • Nataliya Shcherban
  • Pavel Yaremov
  • Svitlana Gryn
  • Vladimir Solomakha
  • Igor Bezverkhyy
  • Nataliia Kasian
  • Vladimir Ilyin
Original Paper


The aim of this study was to determine the influence of the conditions of low-temperature sequential dual template synthesis of micro-mesoporous aluminosilicates based on precursors of ZSM-5 on their phase composition, structure, sorption properties, and acidity. The methods of X-ray powder diffraction and volumetric adsorption (N2, 77 K) analysis, dynamic light scattering (for characterization of sol-precursors), IR-spectroscopy, energy-dispersive X-ray spectroscopy, scanning and transmission electron microscopy, solid-state 29Si MAS NMR and 29Si{1H} cross-polarization MAS NMR spectroscopy, temperature-programmed desorption of ammonia, ad(de)sorption of pyridine and 2,6-di-tert-butylpyridine with IR-spectral control were used for characterization of the obtained micro-mesoporous aluminosilicates. It was shown that the convergence of compositions of the reaction mixtures and conditions of formation of zeolites and mesoporous molecular sieves, in particular, the use of alkali-free reaction medium and relatively low temperature of hydrothermal treatment (100 °C) allowed to obtain the X-ray amorphous and partially zeolitized micro-mesoporous aluminosilicates. Such aluminosilicates have appropriate structural and sorption properties and the acidity inherent to ZSM-5 and MCM-41, including the Brønsted and Lewis acid sites which are accessible for bulk molecules of organic substances. The possibility of purposeful regulation of characteristics of micro-mesoporous aluminosilicates depending on the conditions of their preparation was confirmed. Herewith the investigated aluminosilicates possess the sorption and acidic properties which are different from the mechanical mixture of two phases.


Zeolite Acid Site Lewis Acid Site Strong Acid Site Mesoporous Molecular Sieve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



TEM and solid-state MAS NMR studies were carried out at the University of Burgundy (Dijon, France) and at the University of Oviedo (Oviedo, Spain), respectively, thanks to the support of the International Research Staff Exchange Scheme (IRSES) (Project 319013). For carrying out the solid-state MAS NMR studies the authors express their gratitude to Sergei Khainakov from University of Oviedo, Spain.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Ivanova II, Knyazeva EE (2013) Micro-mesoporous materials obtained by zeolite recrystallization: synthesis, characterization and catalytic applications. Chem Soc Rev 42(9):3671–3688. doi: 10.1039/C2CS35341E CrossRefGoogle Scholar
  2. 2.
    Čejka J, Mintova S (2007) Perspectives of micro/mesoporous composites in catalysis. Catal Rev 49(4):457–509. doi: 10.1080/01614940701583240 CrossRefGoogle Scholar
  3. 3.
    Na K, Choi M, Ryoo R (2013) Recent advances in the synthesis of hierarchically nanoporous zeolites. Microporous Mesoporous Mater 166:3–19. doi: 10.1016/j.micromeso.2012.03.054 CrossRefGoogle Scholar
  4. 4.
    Čejka J, Centi G, Perez-Pariente J, Roth WJ (2012) Zeolite-based materials for novel catalytic applications: opportunities, perspectives and open problems. Catal Today 179(1):2–15. doi: 10.1016/j.cattod.2011.10.006 CrossRefGoogle Scholar
  5. 5.
    Chen HL, Zhang K, Wang YM (2012) Steam-assisted crystallization of TPA+-exchanged MCM-41 type mesoporous materials with thick pore walls. Mater Res Bull 47(7):1774–1782. doi: 10.1016/j.materresbull.2012.03.029 CrossRefGoogle Scholar
  6. 6.
    Xue C, Zhang F, Wu L, Zhao D (2012) Vapor assisted “in situ” transformation of mesoporous carbon–silica composite for hierarchically porous zeolites. Microporous Mesoporous Mater 151:495–500. doi: 10.1016/j.micromeso.2011.09.001 CrossRefGoogle Scholar
  7. 7.
    Serrano DP, Escola JM, Pizarro P (2013) Synthesis strategies in the search for hierarchical zeolites. Chem Soc Rev 42(9):4004–4035. doi: 10.1039/C2CS35330J CrossRefGoogle Scholar
  8. 8.
    Choi M, Cho HS, Srivastava R, Srivastava R, Venkatesan C, Choi D-H, Ryoo R (2006) Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nat Mater 5(9):718–723. doi: 10.1038/nmat1705 CrossRefGoogle Scholar
  9. 9.
    Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R (2009) Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 461(7261):246–249. doi: 10.1038/nature08288 CrossRefGoogle Scholar
  10. 10.
    Na K, Choi M, Park W, Sakamoto Y, Terasaki O, Ryoo R (2010) Pillared MFI zeolite nanosheets of a single-unit-cell thickness. J Am Chem Soc 132(12):4169–4177. doi: 10.1021/ja908382n CrossRefGoogle Scholar
  11. 11.
    Liu Y, Zhang W, Pinnavaia TJ (2000) Steam-stable aluminosilicate mesostructures assembled from zeolite type Y seeds. J Am Chem Soc 122(36):8791–8792. doi: 10.1021/ja001615z CrossRefGoogle Scholar
  12. 12.
    Liu Y, Zhang W, Pinnavaia TJ (2001) Steam-stable MSU-S aluminosilicate mesostructures assembled from zeolite ZSM-5 and zeolite Beta seeds. Angew Chem Int Ed 40(7):1255–1258. doi: 10.1002/1521-3773(20010401)40:7<1255:AID-ANIE1255>3.0.CO;2-U CrossRefGoogle Scholar
  13. 13.
    Liu Y, Pinnavaia TJ (2002) Aluminosilicate mesostructures with improved acidity and hydrothermal stability. J Mater Chem 12(11):3179–3190. doi: 10.1039/B204094H CrossRefGoogle Scholar
  14. 14.
    Zhu Y, Hua Z, Zhou J, Wang L, Zhao J, Gong Y, Wu W, Ruan M, Shi J (2011) Hierarchical mesoporous zeolites: direct self-assembly synthesis in a conventional surfactant solution by kinetic control over the zeolite seed formation. Chem A Eur J 17(51):14618–14627. doi: 10.1002/chem.201101401 CrossRefGoogle Scholar
  15. 15.
    Coriolano ACF, Silva CGC, Costa MJF, Pergher SBC, Caldeira VPS, Araujo AS (2013) Development of HZSM-5/AlMCM-41 hybrid micro–mesoporous material and application for pyrolysis of vacuum gasoil. Microporous Mesoporous Mater 172:206–212. doi: 10.1016/j.micromeso.2013.01.022 CrossRefGoogle Scholar
  16. 16.
    Liu L, Xiong G, Wang X, Cai J, Zhao Z (2009) Direct synthesis of disordered micro–mesoporous molecular sieve. Microporous Mesoporous Mater 123(1–3):221–227. doi: 10.1016/j.micromeso.2009.04.004 CrossRefGoogle Scholar
  17. 17.
    García-Muñoz RA, Serrano DP, Vicente G, Linares M, Vitvarova D, Čejka J (2015) Remarkable catalytic properties of hierarchical zeolite-Beta in epoxide rearrangement reactions. Catal Today 243:141–152. doi: 10.1016/j.cattod.2014.09.014 CrossRefGoogle Scholar
  18. 18.
    Pérez-Pariente J, Díaz I, Agúndez J (2005) Organising disordered matter: strategies for ordering the network of mesoporous materials. Comptes Rendus Chim 8(3–4):569–578. doi: 10.1016/j.crci.2004.10.006 CrossRefGoogle Scholar
  19. 19.
    Do MH, Wang T, Cheng D, Chen F, Zhan X, Rioux RM, Gong J (2014) Simple strategies for fabrication of a periodic mesoporous aluminosilicate with crystalline walls. Small 10(21):4249–4256. doi: 10.1002/smll.201401486 CrossRefGoogle Scholar
  20. 20.
    Serrano DP, García RA, Otero D (2009) Friedel-Crafts acylation of anisole over hybrid zeolitic-mesostructured materials. Appl Catal A Gen 359(1–2):69–78. doi: 10.1016/j.apcata.2009.02.013 CrossRefGoogle Scholar
  21. 21.
    Serrano DP, García RA, Vicente G, Linares M, Procházková D, Čejka J (2011) Acidic and catalytic properties of hierarchical zeolites and hybrid ordered mesoporous materials assembled from MFI protozeolitic units. J Catal 279(2):366–380. doi: 10.1016/j.jcat.2011.02.007 CrossRefGoogle Scholar
  22. 22.
    Liu Y, Pinnavaia TJ (2004) Assembly of wormhole aluminosilicate mesostructures from zeolite seeds. J Mater Chem 14(7):1099–1103. doi: 10.1039/b315193j CrossRefGoogle Scholar
  23. 23.
    Sakthivel A, Huang S-J, Chen W-H, Lan Z-H, Chen K-H, Lin H-P, Mou C-Y, Liu S-B (2005) Direct synthesis of highly stable mesoporous molecular sieves containing zeolite building units. Adv Funct Mater 15(2):253–258. doi: 10.1002/adfm.200400038 CrossRefGoogle Scholar
  24. 24.
    Zhao J, Hua Z, Liu Z, Li Y, Guo L, Bu W, Cui X, Ruan M, Chen H, Shi J (2009) Direct fabrication of mesoporous zeolite with a hollow capsular structure. Chem Commun 48:7578–7580. doi: 10.1039/B913920F CrossRefGoogle Scholar
  25. 25.
    Chen G, Jiang L, Wang L, Zhang J (2010) Synthesis of mesoporous ZSM-5 by one-pot method in the presence of polyethylene glycol. Microporous Mesoporous Mater 134(1–3):189–194. doi: 10.1016/j.micromeso.2010.05.025 CrossRefGoogle Scholar
  26. 26.
    Liu Y, Pinnavaia TJ (2002) Assembly of hydrothermally stable aluminosilicate foams and large-pore hexagonal mesostructures from zeolite seeds under strongly acidic conditions. Chem Mater 14(1):3–5. doi: 10.1021/cm0109544 CrossRefGoogle Scholar
  27. 27.
    Han Y, Wu S, Sun Y, Li D, Xiao F-S (2002) Hydrothermally stable ordered hexagonal mesoporous aluminosilicates assembled from a triblock copolymer and preformed aluminosilicate precursors in strongly acidic media. Chem Mater 14(3):1144–1148. doi: 10.1021/cm010633s CrossRefGoogle Scholar
  28. 28.
    Carr CS, Kaskel S, Shantz DF (2004) Self-assembly of colloidal zeolite precursors into extended hierarchically ordered solids. Chem Mater 16(16):3139–3146. doi: 10.1021/cm035283j CrossRefGoogle Scholar
  29. 29.
    Fyfe CA, Darton RJ, Mowatt H, Lin ZS (2011) Efficient, low-cost, minimal reagent syntheses of high silica zeolites using extremely dense gels below 100 °C. Microporous Mesoporous Mater 144(1–3):57–66. doi: 10.1016/j.micromeso.2011.02.020 CrossRefGoogle Scholar
  30. 30.
    Tosheva L, Valtchev VP (2005) Nanozeolites: synthesis, crystallization mechanism, and applications. Chem Mater 17(10):2494–2513. doi: 10.1021/cm047908z CrossRefGoogle Scholar
  31. 31.
    Cundy CS, Henty MS, Plaisted RJ (1995) Zeolite synthesis using a semicontinuous reactor, part 1: controlled nucleation and growth of ZSM-5 crystals having well-defined morphologies. Zeolites 15(4):353–372. doi: 10.1016/0144-2449(94)00052-T CrossRefGoogle Scholar
  32. 32.
    Cundy CS, Henty MS, Plaisted RJ (1995) Zeolite synthesis using a semicontinuous reactor, part 2: synthesis at high nucleation rates. Zeolites 15(5):400–407. doi: 10.1016/0144-2449(94)00051-S CrossRefGoogle Scholar
  33. 33.
    Twomey TAM, Mackay M, Kuipers HPCE, Thompson RW (1994) In situ observation of silicalite nucleation and growth: a light-scattering study. Zeolites 14(3):162–168. doi: 10.1016/0144-2449(94)90150-3 CrossRefGoogle Scholar
  34. 34.
    Cundy CS, Lowe BM, Sinclair DM (1993) Crystallisation of zeolitic molecular sieves: direct measurements of the growth behaviour of single crystals as a function of synthesis conditions. Faraday Discuss 95:235–252. doi: 10.1039/FD9939500235 CrossRefGoogle Scholar
  35. 35.
    Gonçalves ML, Dimitrov LD, Jordão MH, Wallau M, Urquieta-González EA (2008) Synthesis of mesoporous ZSM-5 by crystallisation of aged gels in the presence of cetyltrimethylammonium cations. Catal Today 133–135:69–79. doi: 10.1016/j.cattod.2007.12.108 CrossRefGoogle Scholar
  36. 36.
    Barakov R, Shcherban N, Yaremov P, Solomakha V, Vyshnevskyy A, Ilyin V (2015) Low-temperature synthesis, structure, sorption properties and acidity of zeolite ZSM-5. J Porous Mater. doi: 10.1007/s10934-015-0105-8 Google Scholar
  37. 37.
    Hosseini S, Taghizadeh M, Eliassi A (2012) Optimization of hydrothermal synthesis of H-ZSM-5 zeolite for dehydration of methanol to dimethyl ether using full factorial design. J Nat Gas Chem 21(3):344–351. doi: 10.1016/S1003-9953(11)60375-7 CrossRefGoogle Scholar
  38. 38.
    Nishiyama N, Egashira Y, Ueyama K (2005) Mesoporous silica, mesoporous silica composite material, and processes for production thereof. US Patent 20,050,232,841 A1Google Scholar
  39. 39.
    Laugel G, Nitsch X, Ocampo F, Louis B (2011) Methanol dehydration into dimethylether over ZSM-5 type zeolites: raise in the operational temperature range. Appl Catal A Gen 402(1–2):139–145. doi: 10.1016/j.apcata.2011.05.039 CrossRefGoogle Scholar
  40. 40.
    Hammond C (2009) The basics of crystallography and diffraction, 3rd edn. Oxford University Press Inc., New YorkGoogle Scholar
  41. 41.
    Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319. doi: 10.1021/ja01269a023 CrossRefGoogle Scholar
  42. 42.
    Saito A, Foley HC (1991) Curvature and parametric sensitivity in models for adsorption in micropores. AIChE J 37(3):429–436. doi: 10.1002/aic.690370312 CrossRefGoogle Scholar
  43. 43.
    Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I: computations from nitrogen isotherms. J Am Chem Soc 73(1):373–380. doi: 10.1021/ja01145a126 CrossRefGoogle Scholar
  44. 44.
    Hudec P, Smiešková A, Židek Z, Schneider P, Ŝolcová O (2002) Determination of microporous structure of zeolites by t-plot method: state-of-the-art. In: Aiello R, Giordano G, Testa F (eds) Impact of zeolites and other porous materials on the new technologies at the beginning of the new millennium, proceedings of the 2nd international FEZA (Federation of the European Zeolite Associations) conference. Stud Surf Sci Catal, vol. 142. Elsevier, Amsterdam, pp 1587–1594Google Scholar
  45. 45.
    Adolphs J (2007) Excess surface work: a modelless way of getting surface energies and specific surface areas directly from sorption isotherms. Appl Surf Sci 253(13):5645–5649. doi: 10.1016/j.apsusc.2006.12.089 CrossRefGoogle Scholar
  46. 46.
    Dubinin MM (1965) Theory of the bulk saturation of microporous activated charcoals during adsorption of gases and vapors. Russ J Phys Chem 39(6):697–704Google Scholar
  47. 47.
    Kim K, Ryoo R, Jang H-D, Choi M (2012) Spatial distribution, strength, and dealumination behavior of acid sites in nanocrystalline MFI zeolites and their catalytic consequences. J Catal 288:115–123. doi: 10.1016/j.jcat.2012.01.009 CrossRefGoogle Scholar
  48. 48.
    Emeis CA (1993) Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J Catal 141(2):347–354. doi: 10.1006/jcat.1993.1145 CrossRefGoogle Scholar
  49. 49.
    Góra-Marek K, Tarach K, Choi M (2014) 2,6-Di-tert-butylpyridine sorption approach to quantify the external acidity in hierarchical zeolites. J Phys Chem C 118(23):12266–12274. doi: 10.1021/jp501928k CrossRefGoogle Scholar
  50. 50.
    Jo C, Ryoo R, Žilková N, Vitvarová D, Čejka J (2013) The effect of MFI zeolite lamellar and related mesostructures on toluene disproportionation and alkylation. Catal Sci Technol 3(8):2119–2129. doi: 10.1039/C3CY00146F CrossRefGoogle Scholar
  51. 51.
    Kirschhock CEA, Ravishankar R, Verspeurt F, Grobet PJ, Jacobs PA, Martens JA (1999) Identification of precursor species in the formation of MFI zeolite in the TPAOH–TEOS–H2O system. J Phys Chem B 103(24):4965–4971. doi: 10.1021/jp990297r CrossRefGoogle Scholar
  52. 52.
    Abrishamkar M, Izadi A (2013) Nano-ZSM-5 zeolite: synthesis and application to electrocatalytic oxidation of ethanol. Microporous Mesoporous Mater 180:56–60. doi: 10.1016/j.micromeso.2013.05.005 CrossRefGoogle Scholar
  53. 53.
    Schoeman BJ, Regev O (1996) A study of the initial stage in the crystallization of TPA-silicalite-1. Zeolites 17(5–6):447–456. doi: 10.1016/S0144-2449(96)00038-3 CrossRefGoogle Scholar
  54. 54.
    Li H, Wu H, Shi J (2013) Competition balance between mesoporous self-assembly and crystallization of zeolite: a key to the formation of mesoporous zeolite. J Alloys Compd 556:71–78. doi: 10.1016/j.jallcom.2012.12.111 CrossRefGoogle Scholar
  55. 55.
    Meynen V, Cool P, Vansant EF (2009) Verified syntheses of mesoporous materials. Microporous Mesoporous Mater 125(3):170–223. doi: 10.1016/j.micromeso.2009.03.046 CrossRefGoogle Scholar
  56. 56.
    Carrero A, van Grieken R, Paredes B (2012) Hybrid zeolitic-mesostructured materials as supports of metallocene polymerization catalysts. Catal Today 179(1):115–122. doi: 10.1016/j.cattod.2011.06.027 CrossRefGoogle Scholar
  57. 57.
    Holmes SM, Zholobenko VL, Thursfield A, Plaisted RJ, Cundy CS, Dwyer J (1998) In situ FTIR study of the formation of MCM-41. J Chem Soc Faraday Trans 94(14):2025–2032. doi: 10.1039/A801898G CrossRefGoogle Scholar
  58. 58.
    Chen C-Y, Li H-X, Davis ME (1993) Studies on mesoporous materials. Microporous Mater 2(1):17–26. doi: 10.1016/0927-6513(93)80058-3 CrossRefGoogle Scholar
  59. 59.
    Barakov RY, Shcherban ND, Yaremov PS, Solomakha VM, Gryn SV, Khaynakova O, Ilyin VG (2013) Effect of dual template synthesis conditions on structural/sorption properties and acidity of microporous/mesoporous ZSM-5/MCM-41 aluminosilicates. Theor Exp Chem 49(4):261–269. doi: 10.1007/s11237-013-9325-7 CrossRefGoogle Scholar
  60. 60.
    Margolese D, Melero JA, Christiansen SC, Chmelka BF, Stucky GD (2000) Direct syntheses of ordered SBA-15 mesoporous silica containing sulfonic acid groups. Chem Mater 12(8):2448–2459. doi: 10.1021/cm0010304 CrossRefGoogle Scholar
  61. 61.
    Melo RAA, Giotto MV, Rocha J, Urquieta-González EA (1999) MCM-41 ordered mesoporous molecular sieves synthesis and characterization. Mater Res 2(3):173–179. doi: 10.1590/S1516-14391999000300010 CrossRefGoogle Scholar
  62. 62.
    Ryoo R, Kim JM (1995) Structural order in MCM-41 controlled by shifting silicate polymerization equilibrium. J Chem Soc Chem Commun 7:711–712. doi: 10.1039/C39950000711 CrossRefGoogle Scholar
  63. 63.
    Huang L, Guo W, Deng P, Xue Z, Li Q (2000) Investigation of synthesizing MCM-41/ZSM-5 composites. J Phys Chem B 104(13):2817–2823. doi: 10.1021/jp990861y CrossRefGoogle Scholar
  64. 64.
    Li H, Jin J, Wu W, Chen C, Li L, Li Y, Zhao W, Gu J, Chen G, Shi J (2011) Synthesis of a hierarchically macro-/mesoporous zeolite based on a micro-emulsion mechanism. J Mater Chem 21(48):19395–19401. doi: 10.1039/C1JM14249F CrossRefGoogle Scholar
  65. 65.
    Lercher JA, Jentys A (2007) Infrared and raman spectroscopy for characterizing zeolites. In: Čejka J, van Bekkum H, Corma A, Schüth F (eds) Introduction to zeolite science and practice 3rd revised edition. Stud Surf Sci Catal, vol. 167. Elsevier, Amsterdam, pp 435–476Google Scholar
  66. 66.
    Derewinski M, Machowska M, Sarv P (2002) Acidity and thermal stability of mesoporous aluminosilicates synthesized by cationic surfactant route. In: Aiello R, Giordano G, Testa F (eds) Impact of zeolites and other porous materials on the new technologies at the beginning of the new millennium, proceedings of the 2nd international FEZA (Federation of the European Zeolite Associations) conference. Stud Surf Sci Catal, vol. 142. Elsevier, Amsterdam, pp 1157–1164Google Scholar
  67. 67.
    Gil B, Zones SI, Hwang S-J, Bejblová M, Čejka J (2008) Acidic properties of SSZ-33 and SSZ-35 novel zeolites: a complex infrared and MAS NMR study. J Phys Chem C 112(8):2997–3007. doi: 10.1021/jp077687v CrossRefGoogle Scholar
  68. 68.
    Corma A, Fornés V, Forni L, Márquez F, Martínez-Triguero J, Moscotti D (1998) 2,6-Di-tert-butyl-pyridine as a probe molecule to measure external acidity of zeolites. J Catal 179(2):451–458. doi: 10.1006/jcat.1998.2233 CrossRefGoogle Scholar
  69. 69.
    Knözinger H (1993) Infrared spectroscopy as a probe of surface acidity. In: Joyner RW, van Santen RA (eds) Elementary reaction steps in heterogeneous catalysis. NATO ASI Series vol. 398. Springer Netherlands, pp 267–285Google Scholar
  70. 70.
    Scholle KFMGJ, Veeman WS, Frenken P, van der Velden GPM (1985) Characterization of intermediate TPA-ZSM-5 type structures during crystallization. Appl Catal 17(2):233–259. doi: 10.1016/S0166-9834(00)83208-X CrossRefGoogle Scholar
  71. 71.
    Guo W, Huang L, Deng P, Xue Z, Li Q (2001) Characterization of Beta/MCM-41 composite molecular sieve compared with the mechanical mixture. Microporous Mesoporous Mater 44–45:427–434. doi: 10.1016/S1387-1811(01)00217-7 CrossRefGoogle Scholar
  72. 72.
    Jermy BR, Siddiqui MAB, Aitani AM, Saeed MR, Al-Khattaf S (2012) Utilization of ZSM-5/MCM-41 composite as FCC catalyst additive for enhancing propylene yield from VGO cracking. J Porous Mater 19(4):499–509. doi: 10.1007/s10934-011-9499-0 CrossRefGoogle Scholar
  73. 73.
    Huang J, Li G, Wu S, Wang H, Xing L, Song K, Wu T, Kan Q (2005) Synthesis, characterization and catalytic activity of cubic Ia3d and hexagonal p6mm mesoporous aluminosilicates with enhanced acidity. J Mater Chem 15(10):1055. doi: 10.1039/b413906b CrossRefGoogle Scholar
  74. 74.
    Bobonich FM (1992) Regularities of influence of chemical composition on the thermal stability, ion exchange and adsorption properties of zeolites. Doctoral Dissertation, L.V. Pisarzhevsky Institute of Physical Chemistry, Academy of Sciences of the Ukrainian SSR, KievGoogle Scholar
  75. 75.
    Belyakov VN (1974) A comparative study of the mechanisms of ion exchange on the disperse dioxide of the elements of IV group. Ph.D. Dissertation, L.V. Pisarzhevsky Institute of Physical Chemistry, Academy of Sciences of the Ukrainian SSR, KievGoogle Scholar
  76. 76.
    Hair ML, Hertl W (1970) Acidity of surface hydroxyl groups. J Phys Chem 74(1):91–94. doi: 10.1021/j100696a016 CrossRefGoogle Scholar
  77. 77.
    Balasamy RJ, Odedairo T, Al-Khattaf S (2011) Unique catalytic performance of mesoporous molecular sieves containing zeolite units in transformation of m-xylene. Appl Catal A Gen 409–410:223–233. doi: 10.1016/j.apcata.2011.10.007 CrossRefGoogle Scholar
  78. 78.
    Xia Y, Mokaya R (2004) On the synthesis and characterization of ZSM-5/MCM-48 aluminosilicate composite materials. J Mater Chem 14(5):863–870. doi: 10.1039/B313389C CrossRefGoogle Scholar
  79. 79.
    Ravishankar R, Kirschhock CEA, Knops-Gerrits P-P et al (1999) Characterization of nanosized material extracted from clear suspensions for MFI zeolite synthesis. J Phys Chem B 103(24):4960–4964. doi: 10.1021/jp990296z CrossRefGoogle Scholar
  80. 80.
    Kirschhock CEA, Ravishankar R, Van Looveren L, Jacobs PA, Martens JA (1999) Mechanism of transformation of precursors into nanoslabs in the early stages of MFI and MEL zeolite formation from TPAOH–TEOS–H2O and TBAOH–TEOS–H2O mixtures. J Phys Chem B 103(24):4972–4978. doi: 10.1021/jp990298j CrossRefGoogle Scholar
  81. 81.
    de Moor P-PEA, Beelen TPM, van Santen RA (1999) In situ observation of nucleation and crystal growth in zeolite synthesis: a small-angle X-ray scattering investigation on Si-TPA-MFI. J Phys Chem B 103(10):1639–1650. doi: 10.1021/jp982553q CrossRefGoogle Scholar
  82. 82.
    Schoeman BJ (1997) A spectroscopic study of the initial stage in the crystallization of TPA-silicalite-1 from clear solutions. In: Chon H, Ihm S-K, Uh YS (eds) Progress in zeolite and microporous materials, proceedings of the 11th international zeolite conference. Stud Surf Sci Catal, vol. 105. Elsevier, Amsterdam, pp 647–654Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Roman Barakov
    • 1
  • Nataliya Shcherban
    • 1
  • Pavel Yaremov
    • 1
  • Svitlana Gryn
    • 1
    • 2
  • Vladimir Solomakha
    • 1
  • Igor Bezverkhyy
    • 3
  • Nataliia Kasian
    • 1
    • 4
  • Vladimir Ilyin
    • 1
  1. 1.Department of Porous Substances and Materials, L.V. Pisarzhevsky Institute of Physical ChemistryNational Academy of Sciences of UkraineKievUkraine
  2. 2.Department of Supramolecular Chemistry and Biochemistry, Institute of High TechnologiesTaras Shevchenko Kyiv National UniversityKievUkraine
  3. 3.Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de BourgogneDijon CedexFrance
  4. 4.Department of Chemistry, inGAP Centre for Research-Based InnovationUniversity of OsloOsloNorway

Personalised recommendations