Advertisement

Journal of Materials Science

, Volume 51, Issue 8, pp 3941–3956 | Cite as

Template-free synthesis of titania architectures with controlled morphology evolution

  • Ting Cheng
  • Guoqiang Zhang
  • Yonggao Xia
  • Qing Ji
  • Ying Xiao
  • Xiaoyan Wang
  • Meimei Wang
  • Rui Liu
  • Bao Qiu
  • Guoxin Chen
  • Huifeng Chen
  • Zaicheng Sun
  • Jian-Qiang Meng
  • Zhaoping Liu
  • Tonghu Xiao
  • Ling-Dong Sun
  • Chun-Hua Yan
  • Ya-Jun Cheng
Original Paper

Abstract

Template-free synthesis of TiO2 architectures with controlled morphology evolution has been developed through solvothermal reaction in 1,4-dioxane. By simply varying the molar ratio of the concentrated HCl over Titanium isopropoxide (TTIP) from 0 to 5.0, series of morphologies including nanoparticle-built microspheres, nanoparticle-built microspheres decorated with nanorods, nanorod cauliflowers, and nanorod dendrites have been obtained. The influence of several key factors on the morphology control of TiO2 has been systematically investigated. These parameters include the mass (molar) ratio of HCl/TTIP, solvothermal reaction temperature and time, acid species (concentrated nitric acid), and solvent type (tetrahydrofuran and 1,3-dioxane). The mechanism for the formation of the TiO2 architectures with controlled morphology evolution has been discussed. The application of the TiO2 architectures as water splitting photocatalyst and lithium–ion battery anode has been demonstrated. And the corresponding structure–property correlation has been discussed.

Keywords

TiO2 Anatase Phase Rutile Phase Initial Discharge Capacity TiO2 Nanorods 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research is funded by the Natural Science Foundation of China (51103172), the Zhejiang Non-profit Technology Applied Research Program (2013C33190), the open Project of the Beijing National Laboratory for Molecular Science (20140138), and Ningbo Key Laboratory of Polymer Materials. The authors would like to thank Dr. Dingyi Tong for the help with sketch preparation and discussion.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2015_9713_MOESM1_ESM.docx (1.8 mb)
Supplementary material 1 (DOCX 1859 kb)

References

  1. 1.
    Bai J, Zhou B (2014) Titanium dioxide nanomaterials for sensor applications. Chem Rev 114:10131. doi: 10.1021/cr400625j CrossRefGoogle Scholar
  2. 2.
    Bai Y, Mora-Sero I, De Angelis F, Bisquert J, Wang P (2014) Titanium dioxide nanomaterials for photovoltaic applications. Chem Rev 114:10095. doi: 10.1021/cr400606n CrossRefGoogle Scholar
  3. 3.
    Kapilashrami M, Zhang Y, Liu Y-S, Hagfeldt A, Guo J (2014) Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. Chem Rev 114:9662. doi: 10.1021/cr5000893 CrossRefGoogle Scholar
  4. 4.
    Ma Y, Wang X, Jia Y, Chen X, Han H, Li C (2014) Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem Rev 114:9987. doi: 10.1021/cr500008u CrossRefGoogle Scholar
  5. 5.
    Rajh T, Dimitrijevic NM, Bissonnette M, Koritarov T, Konda V (2014) Titanium dioxide in the service of the biomedical revolution. Chem Rev 114:10177. doi: 10.1021/cr500029g CrossRefGoogle Scholar
  6. 6.
    Sanchez C, Belleville P, Popall M, Nicole L (2011) Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market. Chem Soc Rev 40:696. doi: 10.1039/c0cs00136h CrossRefGoogle Scholar
  7. 7.
    Chen HH, Nanayakkara CE, Grassian VH (2012) Titanium dioxide photocatalysis in atmospheric chemistry. Chem Rev 112:5919. doi: 10.1021/cr3002092 CrossRefGoogle Scholar
  8. 8.
    Wang J, Xie J, Jiang Y, Zhang J, Wang Y, Zhou Z (2015) Preparation of mesoporous TiO2-B nanowires from titanium glycolate and their application as an anode material for lithium-ion batteries. J Mater Sci 50:6321. doi: 10.1007/s10853-015-9172-0 CrossRefGoogle Scholar
  9. 9.
    Wen P, Cai C, Zhong H, Hao L, Xu X (2015) A simple way to synthesize anatase with high thermal stability. J Mater Sci 50:5944. doi: 10.1007/s10853-015-9117-7 CrossRefGoogle Scholar
  10. 10.
    Chen XB, Li C, Gratzel M, Kostecki R, Mao SS (2012) Nanomaterials for renewable energy production and storage. Chem Soc Rev 41:7909. doi: 10.1039/c2cs35230c CrossRefGoogle Scholar
  11. 11.
    Froschl T, Hormann U, Kubiak P et al (2012) High surface area crystalline titanium dioxide: potential and limits in electrochemical energy storage and catalysis. Chem Soc Rev 41:5313. doi: 10.1039/c2cs35013k CrossRefGoogle Scholar
  12. 12.
    Hu J, Chen M, Fang XS, Wu LW (2011) Fabrication and application of inorganic hollow spheres. Chem Soc Rev 40:5472. doi: 10.1039/c1cs15103g CrossRefGoogle Scholar
  13. 13.
    Ren Y, Ma Z, Bruce PG (2012) Ordered mesoporous metal oxides: synthesis and applications. Chem Soc Rev 41:4909. doi: 10.1039/c2cs35086f CrossRefGoogle Scholar
  14. 14.
    Zhou ZY, Tian N, Li JT, Broadwell I, Sun SG (2011) Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem Soc Rev 40:4167. doi: 10.1039/c0cs00176g CrossRefGoogle Scholar
  15. 15.
    Asahi R, Morikawa T, Irie H, Ohwaki T (2014) Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chem Rev 114:9824. doi: 10.1021/cr5000738 CrossRefGoogle Scholar
  16. 16.
    Coppens P, Chen Y, Trzop E (2014) Crystallography and properties of polyoxotitanate nanoclusters. Chem Rev 114:9645. doi: 10.1021/cr400724e CrossRefGoogle Scholar
  17. 17.
    De Angelis F, Di Valentin C, Fantacci S, Vittadini A, Selloni A (2014) Theoretical studies on anatase and less common TiO2 phases: bulk, surfaces, and nanomaterials. Chem Rev 114:9708. doi: 10.1021/cr500055q CrossRefGoogle Scholar
  18. 18.
    Liu G, Yang HG, Pan J, Yang YQ, Lu GQ, Cheng H-M (2014) Titanium dioxide crystals with tailored facets. Chem Rev 114:9559. doi: 10.1021/cr400621z CrossRefGoogle Scholar
  19. 19.
    Wang X, Li Z, Shi J, Yu Y (2014) One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts. Chem Rev 114:9346. doi: 10.1021/cr400633s CrossRefGoogle Scholar
  20. 20.
    Lee KT, Cho J (2011) Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries. Nano Today 6:28. doi: 10.1016/j.nantod.2010.11.002 CrossRefGoogle Scholar
  21. 21.
    Rolison DR, Long JW, Lytle JC et al (2009) Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem Soc Rev 38:226. doi: 10.1039/b801151f CrossRefGoogle Scholar
  22. 22.
    Lai XY, Halpert JE, Wang D (2012) Recent advances in micro-/nano-structured hollow spheres for energy applications: from simple to complex systems. Energy Environ Sci 5:5604. doi: 10.1039/c1ee02426d CrossRefGoogle Scholar
  23. 23.
    Wu D, Zhu F, Li J et al (2012) Monodisperse TiO2 hierarchical hollow spheres assembled by nanospindles for dye-sensitized solar cells. J Mater Chem 22:11665. doi: 10.1039/c2jm30786c CrossRefGoogle Scholar
  24. 24.
    Sun Z, Kim JH, Zhao Y et al (2011) Rational design of 3D dendritic TiO2 nanostructures with favorable architectures. J Am Chem Soc 133:19314. doi: 10.1021/ja208468d CrossRefGoogle Scholar
  25. 25.
    Li W, Wu ZX, Wang JX, Elzatahry AA, Zhao DY (2014) A perspective on mesoporous TiO2 materials. Chem Mater 26:287. doi: 10.1021/cm4014859 CrossRefGoogle Scholar
  26. 26.
    Cargnello M, Gordon TR, Murray CB (2014) Solution-phase synthesis of titanium dioxide nanoparticles and nanocrystals. Chem Rev 114:9319. doi: 10.1021/cr500170p CrossRefGoogle Scholar
  27. 27.
    Liu YD, Goebl J, Yin YD (2013) Templated synthesis of nanostructured materials. Chem Soc Rev 42:2610. doi: 10.1039/c2cs35369e CrossRefGoogle Scholar
  28. 28.
    Liu J, Liu F, Gao K, Wu JS, Xue DF (2009) Recent developments in the chemical synthesis of inorganic porous capsules. J Mater Chem 19:6073. doi: 10.1039/b900116f CrossRefGoogle Scholar
  29. 29.
    Cheng YJ, Gutmann JS (2006) Morphology phase diagram of ultrathin anatase TiO2 films templated by a single PS-b-PEO block copolymer. J Am Chem Soc 128:4658. doi: 10.1021/ja0562853 CrossRefGoogle Scholar
  30. 30.
    Rawolle M, Niedermeier MA, Kaune G et al (2012) Fabrication and characterization of nanostructured titania films with integrated function from inorganic-organic hybrid materials. Chem Soc Rev 41:5131. doi: 10.1039/c2cs15321a CrossRefGoogle Scholar
  31. 31.
    Li D, Qin Q, Duan XC, Yang JQ, Guo W, Zheng WJ (2013) General one-pot template-free hydrothermal method to metal oxide hollow spheres and their photocatalytic activities and lithium storage properties. ACS Appl Mater Interfaces 5:9095. doi: 10.1021/am4024059 CrossRefGoogle Scholar
  32. 32.
    Liao J-Y, Lei B-X, Kuang D-B, Su C-Y (2011) Tri-functional hierarchical TiO2 spheres consisting of anatase nanorods and nanoparticles for high efficiency dye-sensitized solar cells. Energy Environ Sci 4:4079. doi: 10.1039/c1ee01574e CrossRefGoogle Scholar
  33. 33.
    Xu F, Wu Y, Zhang XY, Gao ZY, Jiang K (2012) Controllable synthesis of rutile TiO2 nanorod array, nanoflowers and microspheres directly on fluorine-doped tin oxide for dye-sensitised solar cells. Micro Nano Lett 7:826. doi: 10.1049/mnl.2012.0398 CrossRefGoogle Scholar
  34. 34.
    Rui Y, Li Y, Zhang Q, Wang H (2013) Size-tunable TiO2 nanorod microspheres synthesised via a one-pot solvothermal method and used as the scattering layer for dye-sensitized solar cells. Nanoscale 5:12574. doi: 10.1039/c3nr04462a CrossRefGoogle Scholar
  35. 35.
    Shao F, Sun J, Gao L, Yang S, Luo J (2011) Template-free synthesis of hierarchical TiO2 structures and their application in dye-sensitized solar cells. ACS Appl. Mater. Interfaces 3:2148. doi: 10.1021/am200377g CrossRefGoogle Scholar
  36. 36.
    Shen J, Wang H, Zhou Y, Ye N, Li G, Wang L (2012) Anatase/rutile TiO2 nanocomposite microspheres with hierarchically porous structures for high-performance lithium-ion batteries. RSC Adv 2:9173. doi: 10.1039/c2ra20962d CrossRefGoogle Scholar
  37. 37.
    Shen J, Wang H, Zhou Y, Ye N, Wang L (2012) Continuous hollow TiO2 structures with three-dimensional interconnected single crystals and large pore mesoporous shells for high-performance lithium-ion batteries. CrystEngComm 14:6215. doi: 10.1039/c2ce25833a CrossRefGoogle Scholar
  38. 38.
    Zhou Y, Wang X, Wang H et al (2014) Enhanced dye-sensitized solar cells performance using anatase TiO2 mesocrystals with the Wulff construction of nearly 100% exposed 101 facets as effective light scattering layer. Dalton Trans 43:4711. doi: 10.1039/c3dt53010h CrossRefGoogle Scholar
  39. 39.
    Yu X, Wang H, Liu Y et al (2013) One-step ammonia hydrothermal synthesis of single crystal anatase TiO2 nanowires for highly efficient dye-sensitized solar cells. J Mater Chem A 1:2110. doi: 10.1039/c2ta00494a CrossRefGoogle Scholar
  40. 40.
    Lai L-L, Wu J-M (2014) A facile synthesis of hierarchical TiO2 for dye adsorption and photocatalysis. RSC Adv 4:36212. doi: 10.1039/c4ra04790g CrossRefGoogle Scholar
  41. 41.
    Sarkar D, Ghosh CK, Chattopadhyay KK (2012) Morphology control of rutile TiO2 hierarchical architectures and their excellent field emission properties. Cryst Eng Commun 14:2683. doi: 10.1039/c2ce06392a CrossRefGoogle Scholar
  42. 42.
    Sun ZQ, Kim JH, Zhao Y et al (2011) Rational design of 3D dendritic TiO2 nanostructures with favorable architectures. J Am Chem Soc 133:19314. doi: 10.1021/ja208468d CrossRefGoogle Scholar
  43. 43.
    Fu X, Wang B, Ren Z, Fan C, Qian G, Wang Z (2014) Controllable synthesis of TiO2 hierarchical nanostructures and their applications in lithium ion batteries. RSC Adv 4:42772. doi: 10.1039/c4ra08474h CrossRefGoogle Scholar
  44. 44.
    Wang Y, Wang Q, Zhan X, Wang F, Safdar M, He J (2013) Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale 5:8326. doi: 10.1039/c3nr01577g CrossRefGoogle Scholar
  45. 45.
    Zhang QF, Uchaker E, Candelaria SL, Cao GZ (2013) Nanomaterials for energy conversion and storage. Chem Soc Rev 42:3127. doi: 10.1039/c3cs00009e CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ting Cheng
    • 1
    • 2
  • Guoqiang Zhang
    • 3
  • Yonggao Xia
    • 1
  • Qing Ji
    • 1
  • Ying Xiao
    • 1
  • Xiaoyan Wang
    • 1
    • 4
  • Meimei Wang
    • 1
    • 2
  • Rui Liu
    • 5
  • Bao Qiu
    • 1
  • Guoxin Chen
    • 1
  • Huifeng Chen
    • 1
  • Zaicheng Sun
    • 3
  • Jian-Qiang Meng
    • 4
  • Zhaoping Liu
    • 1
  • Tonghu Xiao
    • 2
  • Ling-Dong Sun
    • 5
  • Chun-Hua Yan
    • 5
  • Ya-Jun Cheng
    • 1
  1. 1.Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople’s Republic of China
  2. 2.Faculty of Materials Science and Chemical EngineeringNingbo UniversityNingboPeople’s Republic of China
  3. 3.Changchun Institute of Optics, Fine Mechanics and Physics, State Key Laboratory of Luminescence & ApplicationsChinese Academy of SciencesChangchunPeople’s Republic of China
  4. 4.State Key Laboratory of Separation Membranes and Membrane ProcessesTianjin Polytechnic UniversityTianjinPeople’s Republic of China
  5. 5.Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications & PKU-HKU Joint Lab on Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular EngineeringPeking UniversityBeijingPeople’s Republic of China

Personalised recommendations