Journal of Materials Science

, Volume 51, Issue 8, pp 3793–3805 | Cite as

Effect of particle surface treatment and blending method on flexural properties of injection-molded cenosphere/HDPE syntactic foams

  • B. R. Bharath Kumar
  • Mrityunjay Doddamani
  • Steven E. Zeltmann
  • Nikhil Gupta
  • Uzma
  • S. Gurupadu
  • R. R. N. Sailaja
Original Paper


The present work on cenosphere/high-density polyethylene (HDPE) syntactic foams aims at understanding the effect of surface treatment of cenospheres and functionalization of HDPE on flexural properties. Cenospheres are treated with silane, and HDPE is functionalized with 10 % dibutyl maleate. Effects of mechanical and Brabender mixing methods are also studied. Flexural test specimens are cast with 20, 40, and 60 wt% of cenospheres using injection molding. The flexural modulus and strength are found to increase with increasing cenosphere content. Particle breakage increases with the cenosphere content, and the measured properties show increased dependence on processing method. Brabender mixing resulted in 70 and 41 % higher modulus and strength for 60 wt% cenospheres than HDPE. Modulus of syntactic foams is predicted by two theoretical models. Bardella–Genna model provides close estimates for syntactic foams having 20 and 40 wt% cenospheres, while predictions are higher for higher cenosphere content, likely due to particle breakage during processing. The uncertainty in the properties of cenospheres due to defects contributes to the variation in the predicted values.


Injection Molding HDPE Flexural Modulus Syntactic Foam Hollow Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge Dr. Keshav Prabhu, Mr. Puneeth, and Mr. Praveen of Konkan Speciality Polyproducts Pvt. Ltd., Mangalore, Karnataka, India for providing the Injection molding facility for casting the samples and useful discussions. Acknowledgement is also due to Director, TERI, for providing Brabender facility for preparing the blends. Author Nikhil Gupta acknowledges the Office of Naval Research Grant N00014-10-1-0988. The views expressed in this article are those of authors, not of funding agencies. The authors thank the ME Department at NIT-K and MAE Department at NYU for providing facilities and support.


  1. 1.
    Gupta N, Zeltmann S, Shunmugasamy V, Pinisetty D (2013) Applications of Polymer Matrix Syntactic Foams. JOM, p 1–10Google Scholar
  2. 2.
    Gupta N, Pinisetty D, Shunmugasamy VC (2013) Reinforced polymer matrix syntactic foams: effect of nano and micro-scale reinforcement. Springer International Publishing, ChamCrossRefGoogle Scholar
  3. 3.
    Yalcin B (2015) Chapter 7—hollow glass microspheres in polyurethanes. In: Amos SE, Yalcin B (eds) Hollow glass microspheres for plastics, elastomers, and adhesives compounds. William Andrew Publishing, Oxford, pp 175–200CrossRefGoogle Scholar
  4. 4.
    Yalcin B, Amos SE (2015) Chapter 3—hollow glass microspheres in thermoplastics. In: Amos SE, Yalcin B (eds) Hollow glass microspheres for plastics, elastomers, and adhesives compounds. William Andrew Publishing, Oxford, pp 35–105CrossRefGoogle Scholar
  5. 5.
    Bachmatiuk A, Börrnert F, Schäffel F, Zaka M, Martynkowa GS, Placha D, Schönfelder R, Costa PMFJ, Ioannides N, Warner JH, Klingeler R, Büchner B, Rümmeli MH (2010) The formation of stacked-cup carbon nanotubes using chemical vapor deposition from ethanol over silica. Carbon 48(11):3175–3181CrossRefGoogle Scholar
  6. 6.
    Alkan C, Arslan M, Cici M, Kaya M, Aksoy M (1995) A study on the production of a new material from fly ash and polyethylene. Resour Conserv Recycl 13(3–4):147–154CrossRefGoogle Scholar
  7. 7.
    Li J, Agarwal A, Iveson SM, Kiani A, Dickinson J, Zhou J, Galvin KP (2014) Recovery and concentration of buoyant cenospheres using an Inverted Reflux Classifier. Fuel Process Technol 123:127–139CrossRefGoogle Scholar
  8. 8.
    Lauf RJ (1981) Cenospheres in fly ash and conditions favouring their formation. Fuel 60(12):1177–1179CrossRefGoogle Scholar
  9. 9.
    Anshits NN, Mikhailova OA, Salanov AN, Anshits AG (2010) Chemical composition and structure of the shell of fly ash non-perforated cenospheres produced from the combustion of the Kuznetsk coal (Russia). Fuel 89(8):1849–1862CrossRefGoogle Scholar
  10. 10.
    Gupta N, Singh Brar B, Woldesenbet E (2001) Effect of filler addition on the compressive and impact properties of glass fibre reinforced epoxy. Bull Mater Sci 24(2):219–223CrossRefGoogle Scholar
  11. 11.
    Satapathy B, Das A, Patnaik A (2011) Ductile-to-brittle transition in cenosphere-filled polypropylene composites. J Mater Sci 46(6):1963–1974. doi: 10.1007/s10853-010-5032-0 CrossRefGoogle Scholar
  12. 12.
    Qiao J, Wu G (2011) Tensile properties of fly ash/polyurea composites. J Mater Sci 46(11):3935–3941. doi: 10.1007/s10853-011-5318-x CrossRefGoogle Scholar
  13. 13.
    Manakari V, Parande G, Doddamani M, Gaitonde VN, Siddhalingeshwar IG, Kishore, Shunmugasamy VC, Gupta N (2015) Dry sliding wear of epoxy/cenosphere syntactic foams. Tribol Int 92:425–438CrossRefGoogle Scholar
  14. 14.
    Labella M, Zeltmann SE, Shunmugasamy VC, Gupta N, Rohatgi PK (2014) Mechanical and thermal properties of fly ash/vinyl ester syntactic foams. Fuel 121:240–249CrossRefGoogle Scholar
  15. 15.
    Hossain MM, Shivakumar K (2011) Compression fatigue performance of a fire resistant syntactic foam. Compos Struct 94(1):290–298CrossRefGoogle Scholar
  16. 16.
    Doddamani M, Kishore, Shunmugasamy VC, Gupta N, Vijayakumar HB (2015) Compressive and flexural properties of functionally graded fly ash cenosphere–epoxy resin syntactic foams. Polym Compos 36(4):685–693CrossRefGoogle Scholar
  17. 17.
    Deepthi MV, Sharma M, Sailaja RRN, Anantha P, Sampathkumaran P, Seetharamu S (2010) Mechanical and thermal characteristics of high density polyethylene–fly ash Cenospheres composites. Mater Des 31(4):2051–2060CrossRefGoogle Scholar
  18. 18.
    Wang W, Li Q, Wang B, Xu X-T, Zhai J-P (2012) Synthesis of fly ash cenosphere/polyaniline and mullite/polyaniline core–shell composites. Mater Chem Phys 135(2–3):1077–1083CrossRefGoogle Scholar
  19. 19.
    Guhanathan S, Devi MS, Murugesan V (2001) Effect of coupling agents on the mechanical properties of fly ash/polyester particulate composites. J Appl Polym Sci 82(7):1755–1760CrossRefGoogle Scholar
  20. 20.
    Chand N, Sharma P, Fahim M (2010) Correlation of mechanical and tribological properties of organosilane modified cenosphere filled high density polyethylene. Mater Sci Eng A 527(21–22):5873–5878CrossRefGoogle Scholar
  21. 21.
    Sharma J, Chand N, Bapat MN (2012) Effect of cenosphere on dielectric properties of low density polyethylene. Results Phys 2:26–33CrossRefGoogle Scholar
  22. 22.
    Patankar SN, Das A, Kranov YA (2009) Interface engineering via compatibilization in HDPE composite reinforced with sodium borosilicate hollow glass microspheres. Compos A 40(6–7):897–903CrossRefGoogle Scholar
  23. 23.
    Patankar SN, Kranov YA (2010) Hollow glass microsphere HDPE composites for low energy sustainability. Mater Sci Eng A 527(6):1361–1366CrossRefGoogle Scholar
  24. 24.
    Sailaja RRN (2006) Mechanical and thermal properties of bleached kraft pulp–LDPE composites: effect of epoxy functionalized compatibilizer. Compos Sci Technol 66(13):2039–2048CrossRefGoogle Scholar
  25. 25.
    Sailaja RRN, Seetharamu S (2008) Itaconic acid—grafted—LDPE as compatibilizer for LDPE—plasticized Tapioca starch blends. React Funct Polym 68(4):831–841CrossRefGoogle Scholar
  26. 26.
    Sailaja RRN, Deepthi MV (2010) Mechanical and thermal properties of compatibilized composites of polyethylene and esterified lignin. Mater Des 31(9):4369–4379CrossRefGoogle Scholar
  27. 27.
    Deepthi MV, Sailaja RRN, Sampathkumaran P, Seetharamu S, Vynatheya S (2014) High density polyethylene and silane treated silicon nitride nanocomposites using high-density polyethylene functionalized with maleate ester: mechanical, tribological and thermal properties. Mater Des 56:685–695CrossRefGoogle Scholar
  28. 28.
    Chiu F-C, Yen H-Z, Lee C-E (2010) Characterization of PP/HDPE blend-based nanocomposites using different maleated polyolefins as compatibilizers. Polym Testing 29(3):397–406CrossRefGoogle Scholar
  29. 29.
    Parthasarathi V, Sundaresan B, Dhanalakshmi V, Anbarasan R (2010) Functionalization of HDPE with aminoester and hydroxyester by thermolysis method—an FTIR-RI approach. Thermochim Acta 510(1–2):61–67CrossRefGoogle Scholar
  30. 30.
    Gu J, Wu G, Zhao X (2009) Effect of surface-modification on the dynamic behaviors of fly ash cenospheres filled epoxy composites. Polym Compos 30(2):232–238CrossRefGoogle Scholar
  31. 31.
    Huo P, Yan Y, Li S, Li H, Huang W, Chen S, Zhang X (2010) H2O2 modified surface of TiO2/fly-ash cenospheres and enhanced photocatalytic activity on methylene blue. Desalination 263(1–3):258–263CrossRefGoogle Scholar
  32. 32.
    Desai J, Shit SC, Jain SK (2014) Studies on thermal, electrical and flame properties of surface modified cenosphere filled ABS composites. Int J Plast Technol 18(3):390–396CrossRefGoogle Scholar
  33. 33.
    Das A, Satapathy BK (2011) Structural, thermal, mechanical and dynamic mechanical properties of cenosphere filled polypropylene composites. Mater Des 32(3):1477–1484CrossRefGoogle Scholar
  34. 34.
    Maharsia R, Gupta N, Jerro HD (2006) Investigation of flexural strength properties of rubber and nanoclay reinforced hybrid syntactic foams. Mater Sci Eng A 417(1–2):249–258CrossRefGoogle Scholar
  35. 35.
    Tagliavia G, Porfiri M, Gupta N (2010) Analysis of flexural properties of hollow-particle filled composites. Compos B Eng 41(1):86–93CrossRefGoogle Scholar
  36. 36.
    Tagliavia G, Porfiri M, Gupta N (2012) Influence of moisture absorption on flexural properties of syntactic foams. Compos B Eng 43(2):115–123CrossRefGoogle Scholar
  37. 37.
    Lin W-H, Jen M-HR (1998) Manufacturing and Mechanical Properties of Glass Bubbles/Epoxy Particulate Composite. J Compos Mater 32(15):1356–1390CrossRefGoogle Scholar
  38. 38.
    Kishore, Shankar R, Sankaran R (2005) Short beam three point bend tests in syntactic foams. Part I: microscopic characterization of the failure zones. J Appl Polym Sci 98(2):673–679CrossRefGoogle Scholar
  39. 39.
    Kishore, Shankar R, Sankaran S (2005) Short-beam three-point bend tests in syntactic foams. Part II: effect of microballoons content on shear strength. J Appl Polym Sci 98(2):680–686CrossRefGoogle Scholar
  40. 40.
    Kishore, Shankar R, Sankaran S (2005) Short-beam three-point bend test study in syntactic foam. Part III: effects of interface modification on strength and fractographic features. J Appl Polym Sci 98(2):687–693CrossRefGoogle Scholar
  41. 41.
    Zhu B, Ma J, Wang J, Wu J, Peng D (2012) Thermal, dielectric and compressive properties of hollow glass microsphere filled epoxy-matrix composites. J Reinf Plast Compos 31(19):1311–1326CrossRefGoogle Scholar
  42. 42.
    Yung KC, Zhu BL, Yue TM, Xie CS (2009) Preparation and properties of hollow glass microsphere-filled epoxy-matrix composites. Composit Sci Technol 69(2):260–264CrossRefGoogle Scholar
  43. 43.
    Poveda RL, Dorogokupets G, Gupta N (2013) Carbon nanofiber reinforced syntactic foams: degradation mechanism for long term moisture exposure and residual compressive properties. Polym Degrad Stab 98(10):2041–2053CrossRefGoogle Scholar
  44. 44.
    Divya VC, Ameen Khan M, Nageshwar Rao B, Sailaj RRN (2015) High density polyethylene/cenosphere composites reinforced with multi-walled carbon nanotubes: mechanical, thermal and fire retardancy studies. Mater Des 65:377–386CrossRefGoogle Scholar
  45. 45.
    Bharath Kumar BR, Doddamani M, Zeltmann SE, Gupta N, Ramesh MR, Ramakrishna S (2016) Processing of cenosphere/HDPE syntactic foams using an industrial scale polymer injection molding machine. Mater Des 92:414–423. doi: 10.1016/j.matdes.2015.12.052 Google Scholar
  46. 46.
    Huang JS, Gibson LJ (1991) Fracture toughness of brittle foams. Acta Metall Mater 39(7):1627–1636CrossRefGoogle Scholar
  47. 47.
    Porfiri M, Gupta N (2009) Effect of volume fraction and wall thickness on the elastic properties of hollow particle filled composites. Compos B 40(2):166–173CrossRefGoogle Scholar
  48. 48.
    Gupta N, Ye R, Porfiri M (2010) Comparison of tensile and compressive characteristics of vinyl ester/glass microballoon syntactic foams. Compos B 41(3):236–245CrossRefGoogle Scholar
  49. 49.
    Aureli M, Porfiri M, Gupta N (2010) Effect of polydispersivity and porosity on the elastic properties of hollow particle filled composites. Mech Mater 42(7):726–739CrossRefGoogle Scholar
  50. 50.
    Bardella L, Genna F (2001) On the elastic behavior of syntactic foams. Int J Solids Struct 38(40–41):7235–7260CrossRefGoogle Scholar
  51. 51.
    Bardella L, Sfreddo A, Ventura C, Porfiri M, Gupta N (2012) A critical evaluation of micromechanical models for syntactic foams. Mech Mater 50:53–69CrossRefGoogle Scholar
  52. 52.
    Gabriel LH (1998) History and physical chemistry of HDPE. Ohio University, OhioGoogle Scholar
  53. 53.
    Matsunaga T, Kim JK, Hardcastle S, Rohatgi PK (2002) Crystallinity and selected properties of fly ash particles. Mater Sci Eng A 325(1–2):333–343CrossRefGoogle Scholar
  54. 54.
    Shunmugasamy V, Zeltmann S, Gupta N, Strbik O III (2014) Compressive Characterization of Single Porous SiC Hollow Particles. JOM 66(6):892–897CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Lightweight Materials Laboratory, Department of Mechanical EngineeringNational Institute of Technology KarnatakaSurathkalIndia
  2. 2.Composite Materials and Mechanics Laboratory, Mechanical and Aerospace Engineering Department, Tandon School of EngineeringNew York UniversityBrooklynUSA
  3. 3.The Energy and Resources Institute (TERI), Southern Regional CenterBangaloreIndia

Personalised recommendations