Journal of Materials Science

, Volume 51, Issue 6, pp 3155–3161 | Cite as

Improvement of pyroelectric figures of merit in zirconia-doped congruent lithium niobate single crystals

  • Y. Z. Zhu
  • S. P. Lin
  • Yue Zheng
  • D. C. Ma
  • Biao Wang
Original Paper


Pyroelectric materials are widely investigated for thermal devices. As an efficient standard for evaluation, the pyroelectric figures of merit (FoM) for specific thermal-related applications can clearly represent the performance of voltage responsivity and detectivity. In this paper, six congruent lithium niobate (CLN) single crystals with different ZrO2 doping concentrations were grown by the top-seeded melt growth method including pure CLN. In order to analyze the dielectric and pyroelectric performances, the concentrations, and occupations were extensively studied by ultraviolet and infrared absorption spectra. Our results present an efficient way to improve the FoM of CLN by using zirconia doping. The working temperature of Zr:CLN thermal device can be widened obviously.


Dielectric Loss Doping Concentration LiNbO3 Specific Heat Capacity Lithium Niobate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This Project was supported by the NSFC (Nos. 11372361, 11302268, 10902128, 10732100, 50802026, 10972239), and the Fundamental Research Funds for the Central Universities.


  1. 1.
    Lubomirsky I, Stafsudd O (2012) Invited review article: practical guide for pyroelectric measurements. Rev Sci Instrum 83:051101CrossRefGoogle Scholar
  2. 2.
    Ghaderi R, Davani FA (2014) Determination of surface electric charge profile in pyroelectric crystals. Appl Phys Lett 105:232906CrossRefGoogle Scholar
  3. 3.
    Cui L, Xu Q, Xu X, Li YC, He ZL, Che JX, Lu TQ (2012) Pyroelectric properties of a ferroelectric superlattice with surface transition layers. J Mater Sci 47:1780–1786. doi: 10.1007/s10853-011-5962-1 CrossRefGoogle Scholar
  4. 4.
    Guggilla P, Batra AK, Edwards ME (2009) Electrical characterization of LiTaO3:P(VDF-TrFE) composites. J Mater Sci 44:5469–5474. doi: 10.1007/s10853-009-3753-8 CrossRefGoogle Scholar
  5. 5.
    Whatmore RW (1986) Pyroelectric devices and materials. Rep Prog Phys 49:1335–1386CrossRefGoogle Scholar
  6. 6.
    Liu ST, Long D (1978) Pyroelectric detectors and materials. Proc IEEE 66:14–26CrossRefGoogle Scholar
  7. 7.
    Bhatia B, Karthik J, Tong T, Cahill DG, Martin LW, King WP (2012) Pyroelectric current measurements on PbZr0.2Ti0.8O3 epitaxial layers. J Appl Phys 112:104106CrossRefGoogle Scholar
  8. 8.
    Karthik J, Agar JC, Damodaran AR, Martin LW (2012) Effect of 90° domain walls and thermal expansion mismatch on the pyroelectric properties of epitaxial PbZr0.2Ti0.8O3 thin films. Phys Rev Lett 109:257602CrossRefGoogle Scholar
  9. 9.
    Ehre D, Cohen H (2013) Contact-free pyroelectric measurements using x-ray photoelectron spectroscopy. Appl Phys Lett 103:052901CrossRefGoogle Scholar
  10. 10.
    Chandramouli K, Koduri R (2009) Dielectric and pyroelectric studies of Li-modified rare-earth dysprosium-doped barium strontium sodium niobate ceramics. J Mater Sci 44:1793–1799. doi: 10.1007/s10853-009-3265-6 CrossRefGoogle Scholar
  11. 11.
    Mangalam RVK, Agar JC, Damodaran AR, Karthik J, Martin LW (2013) improved pyroelectric figures of merit in compositionally graded PbZr1−xTixO3 thin films. ACS Appl Mater Inter 5:13235–13241CrossRefGoogle Scholar
  12. 12.
    Lei X, Remiens D, Sama N, Chen Y, Mao C, Dong X, Wang G (2012) Dielectric, ferroelectric and piezoelectric properties of 100-oriented Pb0.4Sr0.6TiO3 thin film sputtered on LaNiO3 electrode. J Cryst Growth 347:15–18CrossRefGoogle Scholar
  13. 13.
    Yao S, Ren W, Ji H, Wu X, Shi P, Xue D, Ren X, Ye Z (2012) High pyroelectricity in lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramics. J Phys D 45:195301CrossRefGoogle Scholar
  14. 14.
    Maiwa H (2013) Pyroelectric and electrocaloric properties of PZT- and BT-based ceramics. Ferroelectrics 450:84–92CrossRefGoogle Scholar
  15. 15.
    Zheng S, Kong Y, Liu H, Chen S, Zhang L, Liu S, Xu J (2012) Pyroelectric effect in green light-assisted domain reversal of Mg-doped LiNbO3 crystals. Opt Express 20:29131–29136CrossRefGoogle Scholar
  16. 16.
    Tomeno I, Matsumura S (1987) Elastic and dielectric properties of LiNbO3. J Phys Soc Jpn 56:163–177CrossRefGoogle Scholar
  17. 17.
    Kovács L, Szaller Z, Lengyel K, Péter Á, Hajdara I, Mandula G, Pálfalvi L, Hebling J (2013) Photorefractive damage resistance threshold in stoichiometric LiNbO3: Zr crystals. Opt Lett 38:2861–2864CrossRefGoogle Scholar
  18. 18.
    Kong Y, Liu S, Zhao Y, Liu H, Chen S, Xu J (2007) Highly optical damage resistant crystal: zirconium-oxide-doped lithium niobate. Appl Phys Lett 91:081908CrossRefGoogle Scholar
  19. 19.
    Abarkan M, Aillerie M, Kokanyan N, Teyssandier C, Kokanyan E (2014) Electro-optic and dielectric properties of Zirconium-doped congruent lithium niobate crystals. Opt Mater Express 4:179–189CrossRefGoogle Scholar
  20. 20.
    Cheng LQ, Zhou JJ, Wang K, Li JF, Wang QM (2012) Influence of ball milling on sintering behavior and electrical properties of (Li, Na, K)NbO3 lead-free piezoceramics. J Mater Sci 47:6908–6914. doi: 10.1007/s10853-012-6635-4 CrossRefGoogle Scholar
  21. 21.
    Shen X, Yan W, Jing J et al (2014) Study on the temperature dependence of the OH- absorption band in Hf-doped LiNbO3 crystals. J Mater Sci 49:3775–3779. doi: 10.1007/s10853-014-8088-4 CrossRefGoogle Scholar
  22. 22.
    Bai WC, Jiang L, Zhang HZ, Ma GH (2011) Influence of Mg doping on the dielectric properties of MgO-doped lithium niobate. Phys B 406:1567–1570CrossRefGoogle Scholar
  23. 23.
    Zhen XH, Zhao LC, Xu YH (2003) Defect structure and optical damage resistance of Zn:Fe:LiNbO3 crystals. Appl Phys B 76:655–659CrossRefGoogle Scholar
  24. 24.
    Zhang T, Wang B, Ling FR et al (2004) Growth and optical property of Mg, Fe co-doped near-stoichiometric LiNbO3 crystal. Mater Chem Phys 83:350–353CrossRefGoogle Scholar
  25. 25.
    He X, Xue D (2006) Doping mechanism of optical-damage-resistant ions in lithium niobate crystals. Opt Commun 256:537–541CrossRefGoogle Scholar
  26. 26.
    Abdi F, Fontana MD, Aillerie M, Bourson P (2006) Coexistence of Li and Nb vacancies in the defect structure of pure LiNbO3 and its relationship to optical properties. Appl Phys A 83:427–434CrossRefGoogle Scholar
  27. 27.
    Yan W, Minzioni P, Nava G, Galinetto P, Shi L, Degiorgio V (2011) Critical composition of reduced pure-LiNbO3 crystals: a sudden change in optical properties. Appl Phys Lett 98:151112CrossRefGoogle Scholar
  28. 28.
    Schlarb U, Klauer S, Wesselmann M, Betzler K, Wiihlecke M (1993) Determination of the Li/Nb ratio in lithium niobate by means of birefringence and raman measurements. Appl Phys A 56:311–315CrossRefGoogle Scholar
  29. 29.
    Veithen M, Ghosez Ph (2002) First-principles study of the dielectric and dynamical properties of lithium niobate. Phys Rev B 65:214302CrossRefGoogle Scholar
  30. 30.
    Gonze X, Lee C (1997) Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys Rev B 55:10355–10368CrossRefGoogle Scholar
  31. 31.
    Klauer S, Wohlecke M, Kapphan S (1992) Influence of H-D isotopic substitution on the protonic conductivity of LiNbO3. Phys Rev B 45:2786–2799CrossRefGoogle Scholar
  32. 32.
    Riscob B, Bhatt R, Vijayan N, Bhaumik I, Ganesamoorthy S, Wahab MA, Rashmi Bhagavannarayana G (2013) Structural, optical and thermal properties of Zr-Fe co-doped congruent LiNbO3 single crystals. J Appl Cryst 46:601–609CrossRefGoogle Scholar
  33. 33.
    Nakamura M, Sekita M, Takekawa S, Kitamura K (2006) Crystal growth and characterization of Nd, Mg co-doped near-stoichiometric LiNbO3. J Cryst Growth 290:144–148CrossRefGoogle Scholar
  34. 34.
    Peng Q, Cohen RE (2011) Origin of pyroelectricity in LiNbO3. Phys Rev B 83:220103CrossRefGoogle Scholar
  35. 35.
    Xue D, Kitamura K (2003) Crystallographic modifications of physical properties of lithium niobate crystals by the cation location. J Cryst Growth 249:507–513CrossRefGoogle Scholar
  36. 36.
    Grabmaier BC, Wersing W, Koestler W (1991) Properties of undoped and MgO-doped LiNbO3 correlation to the defect structure. J Cryst Growth 110:339–347CrossRefGoogle Scholar
  37. 37.
    Bartholomaus T, Buse K, Deuper C, Kratzig E (1994) Pyroelectric coefficients of LiNbO3 crystals of different compositions. Phys Stat Sol (a) 142:55–57CrossRefGoogle Scholar
  38. 38.
    Gebre T, Batra AK, Guggilla P, Aggarwal MD, Lal RB (2004) Pyroelectric properties of pure and doped lithium niobate crystals for infrared sensors. Ferroelectric Lett 31:131–139CrossRefGoogle Scholar
  39. 39.
    Wenbo Y, Lihong S, Hongjian C, Xinzheng Z, Yongfa K (2010) Investigations on the UV photorefractivity of LiNbO3: Hf. Opt Lett 35:601–603CrossRefGoogle Scholar
  40. 40.
    Wenbo Y, Yongfa K, Lihong S et al (2006) Investigations of centers formed in UV-light-induced absorption for LiNbO3 highly doped with Mg and Hf. Opt Express 14:10898–10906CrossRefGoogle Scholar
  41. 41.
    Sen P, Sisodia N, Bartwal KS (2006) Influence of MgO doping on spontaneous polarization and second-order susceptibility in LiNbO3 crystals. Opt Mater 29:206–210CrossRefGoogle Scholar
  42. 42.
    Xue D, Kitamura K (2002) Dielectric characterization of the defect concentration in lithium niobate single crystals. Solid State Commun 122:537–541CrossRefGoogle Scholar
  43. 43.
    Yongfa K, Shiguo L, Jingjun X (2012) Recent Advances in the Photorefraction of Doped Lithium Niobate Crystals. Materials 5:1954–1971CrossRefGoogle Scholar
  44. 44.
    Li Y, Li J, Zhou Z, Guo R, Bhalla AS (2013) Electrical properties of lead-free Fe-doped niobium-rich potassium lithium tantalate niobate single crystals. EPL 104:57008CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Sino French Institute of Nuclear Engineering and TechnologySun Yat-sen UniversityZhuhaiChina
  2. 2.State Key Laboratory of Optoelectronic Materials and Technologies/Institute of Optoelectronic and Functional Composite Materials, School of Physics and EngineeringSun Yat-sen UniversityGuangzhouChina

Personalised recommendations