Skip to main content
Log in

One-pot synthesis of a photostable green fluorescent probe for biological imaging

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An excited state intramolecular proton transfer fluorogen, 2-(4-(benzo[d]thiazol-2-yl)-4-hydroxyphenylcarbamoyl) benzoic acid (T4BA), has been synthesized via one-pot reaction for the first time. The cellular imaging effect of T4BA was investigated on human cervical carcinoma cell line HeLa. The fluorescence stability and cellular uptake mechanism of T4BA were also investigated. T4BA exhibits a typical fluorescent characteristic of organic small molecule and the carboxyl group of T4BA can easily form hydrogen bond with the active constituents in cytoplasm which leads to rapid (as quick as 30 s) and selective light-up of the cytoplasm of HeLa cells. Survival rate reached more than 85 % with the cultural concentration up to 100 μM, indicating almost no toxicity of T4BA to the living cells at the working concentration. Results revealed that fluorescence intensity of T4BA decreased less than 10 % after 10 min continuous laser illumination and this dye acts well over a wide pH range, indicating a significant photostability and great potential of it for commercializing as a highly attractive cell imaging agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jung G (2011) Fluorescent proteins II application of fluorescent protein technology. Springer series on fluorescence. Springer Berlin Heidelberg

    Google Scholar 

  2. Wang BG, Tang WW, Lu HS, Huang ZY (2015) Hydrothermal synthesis of ionic liquid-capped carbon quantum dots with high thermal stability and anion responsiveness. J Mater Sci 50:5411–5418. doi:10.1007/s10853-015-9085-y

    Article  Google Scholar 

  3. Swarnalatha K, Muthuvinothini A (2015) Fluorescence sensing of melamine based on zirconia-coated CdS quantum dots. J Mater Sci 50:2318–2326. doi:10.1007/s10853-014-8795-x

    Article  Google Scholar 

  4. Zhang W, Sun H, Yin SY, Chang JJ, Li YH, Guo XY, Yuan Z (2015) Bright red-emitting polymer dots for specific cellular imaging. J Mater Sci 50:5571–5577. doi:10.1007/s10853-015-9104-z

    Article  Google Scholar 

  5. Chan Y-H, Wu P-J (2015) Semiconducting polymer nanoparticles as fluorescent probes for biological imaging and sensing. Part Part Syst Char 32:11–28. doi:10.1002/ppsc.201400123

    Article  Google Scholar 

  6. Liu H-Y, Wu P-J, Kuo S-Y, Chen C-P, Chang E-H, Wu C-Y, Chan Y-H (2015) Quinoxaline-based polymer dots with ultrabright red to near-infrared fluorescence for In vivo biological imaging. J Am Chem Soc 137:10420–10429. doi:10.1021/jacs.5b06710

    Article  Google Scholar 

  7. Chan Y-H, Ye FM, Gallina ME, Zhang XJ, Jin YH, Wu I-C, Chiu DT (2012) Hybrid semiconducting polymer dot-quantum dot with narrow-band emission, near-infrared fluorescence, and high brightness. J Am Chem Soc 134:7309–7312. doi:10.1021/ja3022973

    Article  Google Scholar 

  8. Ding MY, Lu CH, Cao LH, Song JB, Ni YR, Xu ZZ (2013) Facile synthesis of beta-NaYF4:Ln(3 +) (Ln = Eu, Tb, Yb/Er, Yb/Tm) microcrystals with down- and up-conversion luminescence. J Mater Sci 48:4989–4998. doi:10.1007/s10853-013-7285-x

    Article  Google Scholar 

  9. Liao JS, Nie LL, Liu SH, Liu B, Wen HR (2014) Yb3+ concentration dependence of upconversion luminescence in Y2Sn2O7:Yb3+/Er3+nanophosphors. J Mater Sci 49:6081–6086. doi:10.1007/s10853-014-8334-9

    Article  Google Scholar 

  10. Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90:1103–1163. doi:10.1152/physrev.00038.2009

    Article  Google Scholar 

  11. Chen H, Liu YF, Lu YN, Wu HM, Qian H (2014) Using layer-by-layer assembly to fabricate NaLa(MoO4)(2)@CdTe core-shell microspheres with high fluorescence. J Mater Sci 49:4506–4512. doi:10.1007/s10853-014-8149-8

    Article  Google Scholar 

  12. Chang JC, Rosenthal SJ (2013) Single quantum dot imaging in living cells. Methods Mol Biol 991:149–162. doi:10.1007/978-1-62703-336-7_15

    Article  Google Scholar 

  13. Li HC, Zhou QF, Liu W, Yan B, Zhao Y, Jiang GB (2008) Progress in the toxicological researches for quantum dots. Sci China Ser B-Chem 51:393–400. doi:10.1007/s11426-008-0057-9

    Article  Google Scholar 

  14. Zollinger H (1991) Color chemistry. Synthesis, properties and applications of organic dyes and pigments, 3rd edn. VCH, Weinheim

    Google Scholar 

  15. Zheng QS, Juette MF, Jockusch S, Wasserman MR, Zhou Z, Altman RB, Blanchard SC (2014) Ultra-stable organic fluorophores for single-molecule research. Chem Soc Rev 43:1044–1056. doi:10.1039/c3cs60237k

    Article  Google Scholar 

  16. Zhang GL, Zhang HY, Gao Y, Tao R, Xin LJ, Yi JY, Li FY, Liu WL, Qiao J (2014) Near-infrared-emitting iridium(III) complexes as phosphorescent dyes for live cell imaging. Organometallics 33:61–68. doi:10.1021/om400676h

    Article  Google Scholar 

  17. Li SPY, Liu HW, Zhang KY, Lo KKW (2010) Modification of luminescent iridium(III) polypyridine complexes with discrete poly(ethylene glycol) (PEG) pendants: synthesis, emissive behavior, intracellular uptake, and PEGylation properties. Chem Eur J 16:8329–8339. doi:10.1002/chem.201000474

    Article  Google Scholar 

  18. Lo KKW, Li SPY, Zhang KY (2011) Development of luminescent iridium(III) polypyridine complexes as chemical and biological probes. N J Chem 35:265–287. doi:10.1039/c0nj00478b

    Article  Google Scholar 

  19. Birks JB (1970) Photophysics of aromatic molecules. Wiley-Interscience, London

    Google Scholar 

  20. Jo HJ, Nam JE, Sim K, Kim DH, Kim JH, Kang JK (2014) Molecular design and photovoltaic performance of organic dyes containing phenothiazine for dye-sensitized solar cells. J Nanosci Nanotechno 14:7938–7942. doi:10.1166/jnn.2014.9450

    Article  Google Scholar 

  21. Jing CR, Cornish VW (2011) Chemical tags for labeling proteins inside living cells. Acc Chem Res 44:784–792. doi:10.1021/ar200099f

    Article  Google Scholar 

  22. Chithrani BD, Chan WCW (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. NanoLett 7:1542–1550. doi:10.1021/nl070363y

    Article  Google Scholar 

  23. Dombu CY, Kroubi CM, Zibouche R, Matran R, Betbeder D (2010) Characterization of endocytosis and exocytosis of cationic nanoparticles in airway epithelium cells. Nano Technol 21:355102. doi:10.1088/0957-4484/21/35/355102

    Google Scholar 

  24. Shi HB, Kwok RTK, Liu JZ, Xing BG, Tang BZ, Liu B (2012) Real-time monitoring of cell apoptosis and drug screening using fluorescent light-up probe with aggregation-induced emission characteristics. J Am Chem Soc 134:17972–17981. doi:10.1021/ja3064588

    Article  Google Scholar 

  25. Li K, Qin W, Ding D, Tomczak N, Geng JL, Liu RR, Liu JZ, Zhang XH, Liu HW, Liu B, Tang BZ (2013) Photostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing. Sci Rep. 3:1150. doi:10.1038/Srep01150

    Google Scholar 

  26. Cai MM, Gao ZQ, Zhou XH, Wang XP, Chen SF, Zhao YZ, Qian Y, Shi NE, Mi BX, Xie LH, Huang W (2012) A small change in molecular structure, a big difference in the AIEE mechanism. Phys Chem Chem Phys 14:5289–5296. doi:10.1039/c2cp23040b

    Article  Google Scholar 

  27. Qian Y, Cai MM, Xie LH, Yang GQ, Wu SK, Huang W (2011) Restriction of photoinduced twisted intramolecular charge transfer. Chem Phys Chem 12:397–404. doi:10.1002/cphc.201000457

    Google Scholar 

  28. Tu ZZ, Liu M, QianY Yang GQ, CaiMM Wang LH, Huang W (2015) Easily fixed simple small ESIPT molecule with aggregation induced emission for fast and photostable “turn-on” bioimaging. RSC Advance 5:7789–7793. doi:10.1039/c4ra14405h

    Article  Google Scholar 

  29. Wolfbeis OS (2015) An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev 44:4743–4768. doi:10.1039/c4cs00392f

    Article  Google Scholar 

  30. Mueller H, Kassack MU, Wiese M (2004) Comparison of the usefulness of the MTT, ATP, and calcein assays to predict the potency of cytotoxic agents in various human cancer cell lines. J Biomol Screen 9:506–515. doi:10.1177/1087057104265386

    Article  Google Scholar 

  31. Xu WC, Zuo JR, Wang LL, Ji LNA, Chao H (2014) Dinuclear ruthenium(II) polypyridyl complexes as single and two-photon luminescence cellular imaging probes. Chem Commun 50:2123–2125. doi:10.1039/c3cc48916g

    Article  Google Scholar 

  32. Qian Y, Li SY, Wang Q, Sheng XH, Wu SK, Wang SQ, Li J, Yang GQ (2012) A nonpolymeric highly emissive ESIPT organogelator with neither dendritic structures nor long alkyl/alkoxy chains. Soft Matter 8:757–764. doi:10.1039/c1sm06358h

    Article  Google Scholar 

  33. Qian Y, Li S, Zhang GQ, Wang Q, Wang SQ, Xu HJ, Li CZ, Li Y, Yang G (2007) Aggregation-induced emission enhancement of 2-(2’-hydroxyphenyl)benzothiazole-based excited-state intramolecular proton-transfer compounds. J Phys Chem B 111:5861–5868. doi:10.1021/jp070076i

    Article  Google Scholar 

  34. Geng JL, Li K, Qin W, Ma L, Gurzadyan GG, Tang BZ, Liu B (2013) Eccentric loading of fluorogen with aggregation-induced emission in PLGA matrix increases nanoparticle fluorescence quantum yield for targeted cellular imaging. Small 9:2012–2019. doi:10.1002/smll.201202505

    Article  Google Scholar 

  35. Puckett CA, Barton JK (2008) Mechanism of cellular uptake of a ruthenium polypyridyl complex. Biochemistry 47:11711–14716. doi:10.1021/bi800856t

    Article  Google Scholar 

  36. Zhang KY, Lo KKW (2009) Synthesis, properties, and live-cell imaging studies of luminescent cyclometalated iidium(III) polypyridine complexes containing two or three biotin pendants. Inorg Chem 48:6011–6025. doi:10.1021/ic900412n

    Article  Google Scholar 

  37. Mailander V, Landfester K (2009) Interaction of nanoparticles with cells. Biomacromolecules 10:2379–2400. doi:10.1021/bm900266r

    Article  Google Scholar 

  38. Yu Y, Hong YN, Feng C, Liu JZ, Lam JWY, Faisal MT, Ng KM, Luo KQ, Tang BZ (2009) Synthesis of an AIE-active fluorogen and its application in cell imaging. Sci China, Ser B 52:15–19. doi:10.1007/s11426-009-0008-0

    Article  Google Scholar 

  39. Chen JW, Law CCW, Lam JWY, Dong YP, Lo SMF, Williams ID, Zhu DB, Tang BZ (2003) Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1-substituted 2,3,4,5-tetraphenylsiloles. Chem Mater 15:1535–1546. doi:10.1021/cm021715z

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (21373114), National Key Basic Research Program of China (973) (2012CB933301), Project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, PAPD (YX030002), Program for Changjiang Scholars and Innovative Research Team in University (IRT1148), Research Launching Foundation from Nanjing University of Posts and Telecommunications (XK0300913043), Research Foundation from Nanjing University of Posts and Telecommunications (XK0300914081), and Natural Science Foundation of Jiangsu Province of China (BK20140871).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Qian or Wei Huang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, Z., Zhang, Q., Liu, M. et al. One-pot synthesis of a photostable green fluorescent probe for biological imaging. J Mater Sci 51, 2972–2979 (2016). https://doi.org/10.1007/s10853-015-9606-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9606-8

Keywords

Navigation