Journal of Materials Science

, Volume 51, Issue 3, pp 1178–1203 | Cite as

Review of the synergies between computational modeling and experimental characterization of materials across length scales

  • Rémi Dingreville
  • Richard A. Karnesky
  • Guillaume Puel
  • Jean-Hubert Schmitt
Multiscale Modeling and Experiment


With the increasing interplay between experimental and computational approaches at multiple length scales, new research directions are emerging in materials science and computational mechanics. Such cooperative interactions find many applications in the development, characterization and design of complex material systems. This manuscript provides a broad and comprehensive overview of recent trends in which predictive modeling capabilities are developed in conjunction with experiments and advanced characterization to gain a greater insight into structure–property relationships and study various physical phenomena and mechanisms. The focus of this review is on the intersections of multiscale materials experiments and modeling relevant to the materials mechanics community. After a general discussion on the perspective from various communities, the article focuses on the latest experimental and theoretical opportunities. Emphasis is given to the role of experiments in multiscale models, including insights into how computations can be used as discovery tools for materials engineering, rather than to “simply” support experimental work. This is illustrated by examples from several application areas on structural materials. This manuscript ends with a discussion on some problems and open scientific questions that are being explored in order to advance this relatively new field of research.


Digital Image Correlation Atom Probe Tomography Electron Back Scatter Diffraction Integrate Computational Material Engineer Multiple Length Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This review article was written by the organizers of a symposium on the synergies between computational and experimental characterization across length scales at the 7th International Conference on Multiscale Materials Modeling, October 6–10, 2014 in Berkeley California USA. This symposium provided a forum for the Materials Science community to present and discuss the recent successes of predicting various physical phenomena and mechanisms in materials systems enabled by the collaboration between experimentalists and modelers. Some scientific research findings, successful collaborations, and tools leveraging the experiment-modeling synergy presented during this symposium are discussed in the present manuscript. Consequently, the authors thank all participants of this symposium for inspiration and motivation. RD and RAK are supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE–AC04–94AL85000.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Ohashi T, Barabash RI, Pang JWL, Ice G, Barabash OM (2009) X-ray microdiffraction and strain gradient crystal plasticity studies of geometrically necessary dislocations near a Ni bicrystal grain boundary. Int J Plast 25:920–941CrossRefGoogle Scholar
  2. 2.
    Zaafarani N, Raabe D, Singh R, Roters F, Zaefferer S (2006) Three-dimensional investigation of the texture and microstructure below a nanoindent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations. Acta Mater 54:1863–1876CrossRefGoogle Scholar
  3. 3.
    Von Ardenne M (1938) Das Elektronen-Rastermikroskop. Z Phys 109:553–572CrossRefGoogle Scholar
  4. 4.
    Seidman DN (2007) Three-dimensional atom-probe tomography: advances and applications. Annu Rev Mater Res 37:127–158CrossRefGoogle Scholar
  5. 5.
    Venables JA, Harland CJ (1973) Electron back-scattering patterns: a new technique for obtaining crystallographic information in the scanning electron microscope. Philos Mag 27:1193–1200CrossRefGoogle Scholar
  6. 6.
    Poulsen HF (2004) Three-dimensional X-ray diffraction microscopy: mapping polycrystals and their dynamics. Springer Science & Business Media, New YorkCrossRefGoogle Scholar
  7. 7.
    Horstemeyer MF (2012) Integrated computational materials engineering (ICME) for metals: using multiscale modeling to invigorate engineering design with science. Wiley, HobokenCrossRefGoogle Scholar
  8. 8.
    Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc A Math Phys 241:376–396CrossRefGoogle Scholar
  9. 9.
    Mura T (1987) Micromechanics of defects in solids. Springer Science & Business Media, New YorkCrossRefGoogle Scholar
  10. 10.
    Suquet P (1987) Elements of homogenization for inelastic solid mechanics. In: Zaoui A, Sanchez-Palencia E (eds) Homogenization techniques for composite media. Springer, New York, pp 193–278CrossRefGoogle Scholar
  11. 11.
    Ke CH, Pugno N, Peng B, Espinosa HD (2005) Experiments and modeling of carbon nanotube-based NEMS devices. J Mech Phys Solids 53:1314–1333CrossRefGoogle Scholar
  12. 12.
    Pelesko JA, Bernstein DH (2002) Modeling MEMS and NEMS. CRC Press, Boca RatonCrossRefGoogle Scholar
  13. 13.
    Cao BY, Sun J, Chen M, Guo ZY (2009) Molecular momentum transport at fluid-solid interfaces in MEMS/NEMS: a review. Int J Mol Sci 10:4638–4706CrossRefGoogle Scholar
  14. 14.
    Dorogin LM, Vlassov S, Polyakov B, Antsov M, Lõhmus R, Kink I, Romanov AE (2013) Real-time manipulation of ZnO nanowires on a flat surface employed for tribological measurements: experimental methods and modeling. Phys Status Solidi B 250:305–317CrossRefGoogle Scholar
  15. 15.
    Zaumseil J, Meitl MA, Hsu JWP, Acharya BR, Baldwin KW, Loo YL, Rogers JA (2003) Three-dimensional and multilayer nanostructures formed by nanotransfer printing. Nano Lett 3:1223–1227CrossRefGoogle Scholar
  16. 16.
    Pan L, Yu G, Zhai D, Lee HR, Zhao W, Liu N, Wang H, Tee BCK, Shi Y, Cui Y, et al (2012) Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc Natl Acad Sci USA 109:9287–9292CrossRefGoogle Scholar
  17. 17.
    Vaezi M, Seitz H, Yang S (2013) A review on 3D micro-additive manufacturing technologies. Int J Adv Manuf Technol 67:1721–1754CrossRefGoogle Scholar
  18. 18.
    Legros M, Gianola DS, Hemker KJ (2008) In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films. Acta Mater 56:3380–3393CrossRefGoogle Scholar
  19. 19.
    Wang CM, Xu W, Liu J, Zhang JG, Saraf LV, Arey BW, Choi D, Yang ZG, Xiao J, Thevuthasan S, et al (2011) In situ transmission electron microscopy observation of microstructure and phase evolution in a SnO\(_2\) nanowire during lithium intercalation. Nano Lett 11:1874–1880CrossRefGoogle Scholar
  20. 20.
    Rollett AD, Lee SB, Campman R, Rohrer GS (2007) Three-dimensional characterization of microstructure by electron back-scatter diffraction. Annu Rev Mater Res 37:627–658CrossRefGoogle Scholar
  21. 21.
    Groeber M, Ghosh S, Uchic MD, Dimiduk DM (2008) A framework for automated analysis and simulation of 3D polycrystalline microstructures. Part 1: statistical characterization. Acta Mater 56:1257–1273CrossRefGoogle Scholar
  22. 22.
    Groeber MA, Jackson MA (2014) DREAM 3D: a digital representation environment for the analysis of microstructure in 3D. Integr Mater Manuf Innov 3:1–17CrossRefGoogle Scholar
  23. 23.
    Brandt A (2002) Multiscale scientific computation: review 2001. In: Multiscale and multiresolution methods, Springer, pp 3–95Google Scholar
  24. 24.
    Weinan E, Engquist B, Li X, Ren W (2007) Heterogeneous multiscale methods: a review. Commun Comput Phys 2:367–450Google Scholar
  25. 25.
    Barenblatt GI (1996) Scaling, self-similarity, and intermediate asymptotics: dimensional analysis and intermediate asymptotics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  26. 26.
    Cheng YT, Cheng CM (2004) Scaling, dimensional analysis, and indentation measurements. Mater Sci Eng R 44:91–149CrossRefGoogle Scholar
  27. 27.
    Miguel MC, Vespignani A, Zapperi S, Weiss J, Grasso JR (2001) Intermittent dislocation flow in viscoplastic deformation. Nature 410:667–671CrossRefGoogle Scholar
  28. 28.
    Csikor FF, Motz C, Weygand D, Zaiser M, Zapperi S (2007) Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale. Science 318:251–254CrossRefGoogle Scholar
  29. 29.
    Chen YS, Choi W, Papanikolaou S, Sethna JP (2010) Bending crystals: emergence of fractal dislocation structures. Phys Rev Lett 105:105501CrossRefGoogle Scholar
  30. 30.
    Bai YL, Wang HY, Xia MF, Ke FJ (2005) Statistical mesomechanics of solid, linking coupled multiple space and time scales. Appl Mech Rev 58:372–388CrossRefGoogle Scholar
  31. 31.
    Liu Y, Greene MS, Chen W, Dikin DA, Liu WK (2013) Computational microstructure characterization and reconstruction for stochastic multiscale material design. Comput Aided Des 45:65–76CrossRefGoogle Scholar
  32. 32.
    Bachmann F, Hielscher R, Schaeben H (2011) Grain detection from 2D and 3D EBSD data-specification of the MTEX algorithm. Ultramicroscopy 111:1720–1733CrossRefGoogle Scholar
  33. 33.
    Germain L, Kratsch D, Salib M, Gey N (2014) Identification of sub-grains and low angle boundaries beyond the angular resolution of EBSD maps. Mater Charact 98:66–72CrossRefGoogle Scholar
  34. 34.
    Bjørstad PE, Widlund OB (1986) Iterative methods for the solution of elliptic problems on regions partitioned into substructures. SIAM J Numer Anal 23:1097–1120CrossRefGoogle Scholar
  35. 35.
    Pothen A, Simon HD, Liou KP (1990) Partitioning sparse matrices with eigenvectors of graphs. SIAM J Matrix Anal A 11:430–452CrossRefGoogle Scholar
  36. 36.
    Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20:359–392CrossRefGoogle Scholar
  37. 37.
    Krysl P, Lall S, Marsden JE (2001) Dimensional model reduction in non-linear finite element dynamics of solids and structures. Int J Numer Methods Eng 51:479–504CrossRefGoogle Scholar
  38. 38.
    Willcox K, Peraire J (2002) Balanced model reduction via the proper orthogonal decomposition. AIAA J 40:2323–2330CrossRefGoogle Scholar
  39. 39.
    Bouvard JL, Ward DK, Hossain D, Nouranian S, Marin EB, Horstemeyer MF (2009) Review of hierarchical multiscale modeling to describe the mechanical behavior of amorphous polymers. J Eng Mater Technol 131:041206CrossRefGoogle Scholar
  40. 40.
    Li Y, Abberton BC, Kröger M, Liu WK (2013) Challenges in multiscale modeling of polymer dynamics. Polymers 5:751–832CrossRefGoogle Scholar
  41. 41.
    de Pablo JJ, Curtin WA (2007) Multiscale modeling in advanced materials research: challenges, novel methods, and emerging applications. MRS Bull 32:905–911CrossRefGoogle Scholar
  42. 42.
    Praprotnik M, Site LD, Kremer K (2008) Multiscale simulation of soft matter: from scale bridging to adaptive resolution. Annu Rev Phys Chem 59:545–571CrossRefGoogle Scholar
  43. 43.
    Murtola T, Bunker A, Vattulainen I, Deserno M, Karttunen M (2009) Multiscale modeling of emergent materials: biological and soft matter. Phys Chem Chem Phys 11:1869–1892CrossRefGoogle Scholar
  44. 44.
    DeHoff RT, Rhines FN (1968) Quantitative microscopy. McGraw-Hill, New YorkGoogle Scholar
  45. 45.
    Fultz B, Howe JM (2012) Transmission electron microscopy and diffractometry of materials. Springer, HeidelbergGoogle Scholar
  46. 46.
    den Dekker A, Gonnissen J, De Backer A, Sijbers J, Van Aert S (2013) Estimation of unknown structure parameters from high-resolution (S)TEM images: what are the limits? Ultramicroscopy 134:34–43CrossRefGoogle Scholar
  47. 47.
    Watanabe M, Williams DB (1999) Atomic-level detection by X-ray microanalysis in the analytical electron microscope. Ultramicroscopy 78:89–101CrossRefGoogle Scholar
  48. 48.
    Genc A, Banerjee R, Thompson GB, Maher DM, Johnson AW, Fraser HL (2009) Complementary techniques for the characterization of thin film Ti/Nb multilayers. Ultramicroscopy 109:1276–1281CrossRefGoogle Scholar
  49. 49.
    Zhou W, Wachs IE, Kiely CJ (2012) Nanostructural and chemical characterization of supported metal oxide catalysts by aberration corrected analytical electron microscopy. Curr Opin Solid State Mater Sci 16:10–22CrossRefGoogle Scholar
  50. 50.
    Blavette D, Bostel A, Sarrau J, Deconihout B, Menand A (1993) An atom probe for three-dimensional tomography. Nature 363:432–435CrossRefGoogle Scholar
  51. 51.
    Marquis EA, Bachhav M, Chen Y, Dong Y, Gordon LM, Joester D, McFarland A (2013) On the current role of atom probe tomography in materials characterization and materials science. Curr Opin Solid State Mater Sci 17:217–223CrossRefGoogle Scholar
  52. 52.
    Marquis EA, Bachhav M, Chen Y, Dong Y, Gordon LM, Joester D, McFarland A (2015) Corrigendum to “On the current role of atom probe tomography in materials characterization and materials science” [Current Opinion Solid State Mater. Sci. 17/5 (2014) 217–223]. Curr Opin Solid State Mater Sci 19:147Google Scholar
  53. 53.
    Sauvage X, Enikeev N, Valiev R, Nasedkina Y, Murashkin M (2014) Atomic-scale analysis of the segregation and precipitation mechanisms in a severely deformed Al-Mg alloy. Acta Mater 72:125–136CrossRefGoogle Scholar
  54. 54.
    Bernier JV, Barton NR, Lienert U, Miller MP (2011) Far-field high-energy diffraction microscopy: a tool for intergranular orientation and strain analysis. J Strain Anal Eng 46:527–547CrossRefGoogle Scholar
  55. 55.
    Reischig P, King A, Nervo L, Vigano N, Guilhem Y, Palenstijn WJ, Batenburg KJ, Preuss M, Ludwig W (2013) Advances in X-ray diffraction contrast tomography: flexibility in the setup geometry and application to multiphase materials. J Appl Crystallogr 46:297–311CrossRefGoogle Scholar
  56. 56.
    Maire E, Withers PJ (2014) Quantitative X-ray tomography. Int Mater Rev 59:1–43CrossRefGoogle Scholar
  57. 57.
    Schuren JC, Shade PA, Bernier JV, Li SF, Blank B, Lind J, Kenesei P, Lienert U, Suter RM, Turner TJ, Dimiduk DM, Almer J (2014) New opportunities for quantitative tracking of polycrystal responses in three dimensions. Curr Opin Solid State Mater Sci 19:235–244CrossRefGoogle Scholar
  58. 58.
    Van Petegem S, Li L, Anderson PM, Van Swygenhoven H (2013) Deformation mechanisms in nanocrystalline metals: insights from in-situ diffraction and crystal plasticity modelling. Thin Solid Films 530:20–24CrossRefGoogle Scholar
  59. 59.
    Obstalecki M, Wong SL, Dawson PR, Miller MP (2014) Quantitative analysis of crystal scale deformation heterogeneity during cyclic plasticity using high-energy X-ray diffraction and finite-element simulation. Acta Mater 75:259–272CrossRefGoogle Scholar
  60. 60.
    Lentz M, Klaus M, Beyerlein IJ, Zecevic M, Reimers W, Knezevic M (2015) In situ X-ray diffraction and crystal plasticity modeling of the deformation behavior of extruded Mg-Li-(Al) alloys: an uncommon tension-compression asymmetry. Acta Mater 86:254–268CrossRefGoogle Scholar
  61. 61.
    Clark JN, Beitra L, Xiong G, Higginbotham A, Fritz DM, Lemke HT, Zhu D, Chollet M, Williams GJ, Messerschmidt M, et al (2013) Ultrafast three-dimensional imaging of lattice dynamics in individual gold nanocrystals. Science 341:56–59CrossRefGoogle Scholar
  62. 62.
    Milathianaki D, Boutet S, Williams GJ, Higginbotham A, Ratner D, Gleason AE, Messerschmidt M, Seibert MM, Swift D, Hering P, et al (2013) Femtosecond visualization of lattice dynamics in shock-compressed matter. Science 342:220–223CrossRefGoogle Scholar
  63. 63.
    Golovin YI (2008) Nanoindentation and mechanical properties of solids in submicrovolumes, thin near-surface layers, and films: a review. Phys Solid State 50:2205–2236CrossRefGoogle Scholar
  64. 64.
    Lodes MA, Hartmaier A, Göken M, Durst K (2011) Influence of dislocation density on the pop-in behavior and indentation size effect in CaF\(_2\) single crystals: experiments and molecular dynamics simulations. Acta Mater 59:4264–4273CrossRefGoogle Scholar
  65. 65.
    Begau C, Hartmaier A, George EP, Pharr GM (2011) Atomistic processes of dislocation generation and plastic deformation during nanoindentation. Acta Mater 59:934–942CrossRefGoogle Scholar
  66. 66.
    Ruestes CJ, Stukowski A, Tang Y, Tramontina DR, Erhart P, Remington BA, Urbassek HM, Meyers MA, Bringa EM (2014) Atomistic simulation of tantalum nanoindentation: effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution. Mater Sci Eng A 613:390–403CrossRefGoogle Scholar
  67. 67.
    Zambaldi C, Yang Y, Bieler TR, Raabe D (2012) Orientation informed nanoindentation of \(\alpha \)-titanium: indentation pileup in hexagonal metals deforming by prismatic slip. J Mater Res 27:356–367CrossRefGoogle Scholar
  68. 68.
    Selvarajou B, Shin JH, Ha TK, Choi IS, Joshi SP, Han HN (2014) Orientation-dependent indentation response of magnesium single crystals: modeling and experiments. Acta Mater 81:358–376CrossRefGoogle Scholar
  69. 69.
    Yao WZ, Krill CE III, Albinski B, Schneider HC, You JH (2014) Plastic material parameters and plastic anisotropy of tungsten single crystal: a spherical micro-indentation study. J Mater Sci 49:3705–3715. doi: 10.1007/s10853-014-8080-z CrossRefGoogle Scholar
  70. 70.
    Minor AM, Morris JWJ, Stach EA (2001) Quantitative in situ nanoindentation in an electron microscope. Appl Phys Lett 79:1625–1627CrossRefGoogle Scholar
  71. 71.
    Legros M, Gianola DS, Motz C (2010) Quantitative in situ mechanical testing in electron microscopes. MRS Bull 35:354–360CrossRefGoogle Scholar
  72. 72.
    Kiener D, Hosemann P, Maloy SA, Minor AM (2011) In situ nanocompression testing of irradiated copper. Nat Mater 10:608–613CrossRefGoogle Scholar
  73. 73.
    Ohmura T, Zhang L, Sekido K, Tsuzaki K (2012) Effects of lattice defects on indentation-induced plasticity initiation behavior in metals. J Mater Res 27:1742–1749CrossRefGoogle Scholar
  74. 74.
    Issa I, Amodeo J, Réthoré J, Joly-Pottuz L, Esnouf C, Morthomas J, Perez M, Chevalier J, Masenelli-Varlot K (2015) In situ investigation of MgO nanocube deformation at room temperature. Acta Mater 86:295–304CrossRefGoogle Scholar
  75. 75.
    Liu Y, Li N, Bufford D, Lee JH, Wang J, Wang H, Zhang X (2015) In situ nanoindentation studies on detwinning and work hardening in nanotwinned monolithic metals. JOM :1–9Google Scholar
  76. 76.
    Soer WA, De Hosson JTM, Minor AM, Morris JW, Stach EA (2004) Effects of solute Mg on grain boundary and dislocation dynamics during nanoindentation of Al-Mg thin films. Acta Mater 52:5783–5790CrossRefGoogle Scholar
  77. 77.
    Gouldstone A, Chollacoop N, Dao M, Li J, Minor AM, Shen YL (2007) Indentation across size scales and disciplines: recent developments in experimentation and modeling. Acta Mater 55:4015–4039CrossRefGoogle Scholar
  78. 78.
    Bufford D, Liu Y, Wang J, Wang H, Zhang X (2014) In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries. Nat Commun 5Google Scholar
  79. 79.
    Boehler J, Elaoufi L, Raclin J (1987) On experimental testing methods for anisotropic materials. Res Mech 21:73–95Google Scholar
  80. 80.
    Bretheau T, Mussot P, Rey C (1984) Microscale plastic inhomogeneities and macroscopic behavior of single and multiphase materials. J Eng Mater-T ASME 106:304–310CrossRefGoogle Scholar
  81. 81.
    Allais L, Bornert M, Bretheau T, Caldemaison D (1994) Experimental characterization of the local strain field in a heterogeneous elastoplastic material. Acta Metall Mater 42:3865–3880CrossRefGoogle Scholar
  82. 82.
    Rey C, DeLesegno PV (1997) Experimental analysis of bifurcation and post bifurcation in iron single crystals. Mater Sci Eng A 234:1007–1010CrossRefGoogle Scholar
  83. 83.
    Martin G, Sinclair CW, Schmitt JH (2013) Plastic strain heterogeneities in an Mg-1Zn-0.5Nd alloy. Scr Mater 68:695–698CrossRefGoogle Scholar
  84. 84.
    Delaire F, Raphanel JL, Rey C (2000) Plastic heterogeneities of a copper multicrystal deformed in uniaxial tension: experimental study and finite element simulations. Acta Mater 48:1075–1087CrossRefGoogle Scholar
  85. 85.
    Soppa E, Doumalin P, Binkele P, Wiesendanger T, Bornert M, Schmauder S (2001) Experimental and numerical characterisation of in-plane deformation in two-phase materials. Comput Mater Sci 21:261–275CrossRefGoogle Scholar
  86. 86.
    Heripre E, Dexet M, Crepin J, Gélebart L, Roos A, Bornert M, Caldemaison D (2007) Coupling between experimental measurements and polycrystal finite element calculations for micromechanical study of metallic materials. Int J Plast 23:1512–1539CrossRefGoogle Scholar
  87. 87.
    Doumalin P, Bornert M (2000) Micromechanical applications of digital image correlation techniques. In: Interferometry in speckle light: theory and applications, pp 67–74Google Scholar
  88. 88.
    Rehrl C, Kleber S, Antretter T, Pippan R (2011) A methodology to study crystal plasticity inside a compression test sample based on image correlation and EBSD. Mater Charact 62:793–800CrossRefGoogle Scholar
  89. 89.
    Ghadbeigi H, Pinna C, Celotto S (2012) Quantitative strain analysis of the large deformation at the scale of microstructure: comparison between digital image correlation and microgrid techniques. Exp Mech 52:1483–1492CrossRefGoogle Scholar
  90. 90.
    Vanderesse N, Lagacé M, Bridier F, Bocher P (2013) An open source software for the measurement of deformation fields by means of digital image correlation. Microsc Microanal 19:820–821Google Scholar
  91. 91.
    Tasan CC, Diehl M, Yan D, Zambaldi C, Shanthraj P, Roters F, Raabe D (2014) Integrated experimental-simulation analysis of stress and strain partitioning in multiphase alloys. Acta Mater 81:386–400CrossRefGoogle Scholar
  92. 92.
    Stinville JC, Vanderesse N, Bridier F, Bocher P, Pollock TM (2015) High resolution mapping of strain localization near twin boundaries in a nickel-based superalloy. Acta Mater 98:29–42CrossRefGoogle Scholar
  93. 93.
    Adams B, Wright S, Kunze K (1993) Orientation imaging: the emergence of a new microscopy. Metall Trans A 24:819–831CrossRefGoogle Scholar
  94. 94.
    Thomas I, Zaefferer S, Friedel F, Raabe D (2003) High-resolution EBSD investigation of deformed and partially recrystallized IF steel. Adv Eng Mater 5:566–570CrossRefGoogle Scholar
  95. 95.
    Mishra SK, Pant P, Narasimhan K, Rollett AD, Samajdar I (2009) On the widths of orientation gradient zones adjacent to grain boundaries. Scr Mater 61:273–276CrossRefGoogle Scholar
  96. 96.
    Clair A, Foucault M, Calonne O, Lacroute Y, Markey L, Salazar M, Vignal V, Finot E (2011) Strain mapping near a triple junction in strained Ni-based alloy using EBSD and biaxial nanogauges. Acta Mater 59:3116–3123CrossRefGoogle Scholar
  97. 97.
    Jedrychowski M, Tarasiuk J, Bacroix B, Wronski S (2013) Electron backscatter diffraction investigation of local misorientations and orientation gradients in connection with evolution of grain boundary structures in deformed and annealed zirconium: a new approach in grain boundary analysis. J Appl Crystallogr 46:483–492CrossRefGoogle Scholar
  98. 98.
    Cepeda-Jimenez CM, Molina-Aldareguia JM, Perez-Prado MT (2015) Effect of grain size on slip activity in pure magnesium polycrystals. Acta Mater 84:443–456CrossRefGoogle Scholar
  99. 99.
    Zaefferer S, Romano P, Friedel F (2008) EBSD as a tool to identify and quantify bainite and ferrite in low-alloyed Al-TRIP steels. J Microsc Oxf 230:499–508CrossRefGoogle Scholar
  100. 100.
    Calcagnotto M, Ponge D, Demir E, Raabe D (2010) Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater Sci Eng A 527:2738–2746CrossRefGoogle Scholar
  101. 101.
    Wilkinson AJ, Clarke EE, Britton TB, Littlewood P, Karamched PS (2010) High-resolution electron backscatter diffraction: an emerging tool for studying local deformation. J Strain Anal Eng 45:365–376CrossRefGoogle Scholar
  102. 102.
    Ruggles TJ, Fullwood DT (2013) Estimations of bulk geometrically necessary dislocation density using high resolution EBSD. Ultramicroscopy 133:8–15CrossRefGoogle Scholar
  103. 103.
    Liang H, Dunne FPE (2009) GND accumulation in bi-crystal deformation: crystal plasticity analysis and comparison with experiments. Int J Mech Sci 51:326–333CrossRefGoogle Scholar
  104. 104.
    Beausir B, Fressengeas C (2013) Disclination densities from EBSD orientation mapping. Int J Solids Struct 50:137–146CrossRefGoogle Scholar
  105. 105.
    Bingham MA, Lograsso BK, Laabs FC (2010) A statistical analysis of the variation in measured crystal orientations obtained through electron backscatter diffraction. Ultramicroscopy 110:1312–1319CrossRefGoogle Scholar
  106. 106.
    Beyerlein IJ, Capolungo L, Marshall PE, McCabe RJ, Tomé CN (2010) Statistical analyses of deformation twinning in magnesium. Philos Mag 90:2161–2190CrossRefGoogle Scholar
  107. 107.
    Juan PA, Pradalier C, Berbenni S, McCabe RJ, Tomé CN, Capolungo L (2015) A statistical analysis of the influence of microstructure and twin-twin junctions on twin nucleation and twin growth in Zr. Acta Mater 95:399–410CrossRefGoogle Scholar
  108. 108.
    Gerber PH, Tarasiuk J, Chiron R, Bacroix B (2005) Estimation of the recrystallized volume fraction from local misorientation calculations. Arch Metall Mater 50:747–755Google Scholar
  109. 109.
    Zaefferer S (2000) New developments of computer-aided crystallographic analysis in transmission electron microscopy. J Appl Crystallogr 33:10–25CrossRefGoogle Scholar
  110. 110.
    Rauch EF, Veron M (2014) Automated crystal orientation and phase mapping in TEM. Mater Charact 98:1–9CrossRefGoogle Scholar
  111. 111.
    Leff AC, Weinberger CR, Taheri ML (2015) Estimation of dislocation density from precession electron diffraction data using the Nye tensor. Ultramicroscopy 153:9–21CrossRefGoogle Scholar
  112. 112.
    Hytch MJ, Snoeck E, Kilaas R (1998) Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74:131–146CrossRefGoogle Scholar
  113. 113.
    Lubk A, Javon E, Cherkashin N, Reboh S, Gatel C, Hytch M (2014) Dynamic scattering theory for dark-field electron holography of 3D strain fields. Ultramicroscopy 136:42–49CrossRefGoogle Scholar
  114. 114.
    Béché A, Rouvière JL, Barnes JP, Cooper D (2013) Strain measurement at the nanoscale: comparison between convergent beam electron diffraction, nano-beam electron diffraction, high resolution imaging and dark field electron holography. Ultramicroscopy 131:10–23CrossRefGoogle Scholar
  115. 115.
    Rowenhorst DJ, Gupta A, Feng CR, Spanos G (2006) 3D crystallographic and morphological analysis of coarse martensite: combining EBSD and serial sectioning. Scr Mater 55:11–16CrossRefGoogle Scholar
  116. 116.
    Thebault J, Solas D, Rey C, Baudin T, Fandeur O, Clavel M (2008) Polycrystalline modelling of Udimet 720 forging. In: Superalloys 2008. TMS, pp 985–992Google Scholar
  117. 117.
    Cédat D, Fandeur O, Rey C, Raabe D (2012) Polycrystal model of the mechanical behavior of a Mo-TiC 30 vol.% metal-ceramic composite using a three-dimensional microstructure map obtained by dual beam focused ion beam scanning electron microscopy. Acta Mater 60:1623–1632CrossRefGoogle Scholar
  118. 118.
    Uchic MD, Groeber MA, Dimiduk DM, Simmons JP (2006) 3D microstructural characterization of nickel superalloys via serial-sectioning using a dual beam FIB-SEM. Scr Mater 55:23–28CrossRefGoogle Scholar
  119. 119.
    Endo T, Sugino Y, Ohono N, Ukai S, Miyazaki N, Wang Y, Ohnuki S (2014) Three-dimensional characterization of ODS ferritic steel using by FIB-SEM serial sectioning method. Microscopy 63:i23–i23CrossRefGoogle Scholar
  120. 120.
    Yamasaki S, Mitsuhara M, Ikeda K, Hata S, Nakashima H (2015) 3D visualization of dislocation arrangement using scanning electron microscope serial sectioning method. Scr Mater 101:80–83CrossRefGoogle Scholar
  121. 121.
    Logé R, Resk H, Sun Z, Delannay L, Bernacki M (2010) Modeling of plastic deformation and recrystallization of polycrystals using digital microstructures and adaptive meshing techniques. Steel Res Int 81:1420–1425Google Scholar
  122. 122.
    Baruchel J, Buffiere JY, Cloetens P, Di Michiel M, Ferrie E, Ludwig W, Maire E, Salvo L (2006) Advances in synchrotron radiation microtomography. Scr Mater 55:41–46CrossRefGoogle Scholar
  123. 123.
    Evrard P, El Bartali A, Aubin V, Rey C, Degallaix S, Kondo D (2010) Influence of boundary conditions on bi-phased polycrystal microstructure calculation. Int J Solids Struct 47:1979–1986CrossRefGoogle Scholar
  124. 124.
    Oddershede J, Camin B, Schmidt S, Mikkelsen LP, Sørensen HO, Lienert U, Poulsen HF, Reimers W (2012) Measuring the stress field around an evolving crack in tensile deformed Mg AZ31 using three-dimensional X-ray diffraction. Acta Mater 60:3570–3580CrossRefGoogle Scholar
  125. 125.
    Withers PJ, Preuss M (2012) Fatigue and damage in structural materials studied by X-ray tomography. Annu Rev Mater Res 42:81–103CrossRefGoogle Scholar
  126. 126.
    Poulsen HF (2012) An introduction to three-dimensional X-ray diffraction microscopy. J Appl Crystallogr 45:1084–1097CrossRefGoogle Scholar
  127. 127.
    Chow W, Solas D, Puel G, Perrin E, Baudin T, Aubin V (2014) Measurement of complementary strain fields at the grain scale. Adv Mater Res, Trans Technol Publ 996:64–69Google Scholar
  128. 128.
    Miller MP, Dawson PR (2014) Understanding local deformation in metallic polycrystals using high energy X-rays and finite elements. Curr Opin Solid State Mater Sci 18:286–299CrossRefGoogle Scholar
  129. 129.
    Pokharel R, Lind J, Kanjarla AK, Lebensohn RA, Li SF, Kenesei P, Suter RM, Rollett AD (2014) Polycrystal plasticity: comparison between grain—scale observations of deformation and simulations. Annu Rev Condens Mater Phys 5:317–346CrossRefGoogle Scholar
  130. 130.
    Olsson CO, Boström M, Buslaps T, Steuwer A (2015) Strain profiling of a ferritic-martensitic stainless steel sheet: comparing synchrotron with conventional X-Ray diffraction. Strain 51:71–77CrossRefGoogle Scholar
  131. 131.
    Pokharel R, Lind J, Li SF, Kenesei P, Lebensohn RA, Suter RM, Rollett AD (2015) In-situ observation of bulk 3D grain evolution during plastic deformation in polycrystalline Cu. Int J Plast 67:217–234CrossRefGoogle Scholar
  132. 132.
    Spear AD, Li SF, Lind JF, Suter RM, Ingraffea AR (2014) Three-dimensional characterization of microstructurally small fatigue-crack evolution using quantitative fractography combined with post-mortem X-ray tomography and high-energy X-ray diffraction microscopy. Acta Mater 76:413–424CrossRefGoogle Scholar
  133. 133.
    Burteau A, N’Guyen F, Bartout JD, Forest S, Bienvenu Y, Saberi S, Naumann D (2012) Impact of material processing and deformation on cell morphology and mechanical behavior of polyurethane and nickel foams. Int J Solids Struct 49:2714–2732CrossRefGoogle Scholar
  134. 134.
    Jornsanoh P, Thollet G, Ferreira J, Masenelli-Varlot K, Gauthier C, Bogner A (2011) Electron tomography combining ESEM and STEM: a new 3D imaging technique. Ultramicroscopy 111:1247–1254CrossRefGoogle Scholar
  135. 135.
    Masenelli-Varlot K, Malchère A, Ferreira J, Bals Heidari Mezerji Hand,S, Messaoudi C, Marco Garrido S (2014) Wet-STEM tomography: principles, potentialities and limitations. Microsc Microanal 20:366–375Google Scholar
  136. 136.
    Browning ND, Bonds MA, Campbell GH, Evans JE, LaGrange T, Jungjohann KL, Masiel DJ, McKeown J, Mehraeen S, Reed BW, et al (2012) Recent developments in dynamic transmission electron microscopy. Curr Opin Solid State Mater Sci 16:23–30CrossRefGoogle Scholar
  137. 137.
    Flannigan DJ, Zewail AH (2012) 4D electron microscopy: principles and applications. Acc Chem Res 45:1828–1839CrossRefGoogle Scholar
  138. 138.
    Baum P (2014) Towards ultimate temporal and spatial resolutions with ultrafast single-electron diffraction. J Phys B 47:124005CrossRefGoogle Scholar
  139. 139.
    Kelly TF, Gribb T, Olson JD, Martens RL, Shepard JD, Wiener SA, Kunicki TC, Ulfig RM, Lenz DR, Strennen EM, et al (2004) First data from a commercial local electrode atom probe (LEAP). Microsc Microanal 10:373–383CrossRefGoogle Scholar
  140. 140.
    Isheim D, Kolli RP, Fine ME, Seidman DN (2006) An atom-probe tomographic study of the temporal evolution of the nanostructure of Fe-Cu based high-strength low-carbon steels. Scr Mater 55:35–40CrossRefGoogle Scholar
  141. 141.
    Kelly TF, Miller MK (2007) Atom probe tomography. Rev Sci Inst 78:031101CrossRefGoogle Scholar
  142. 142.
    Miller MK, Kelly TF, Rajan K, Ringer SP (2012) The future of atom probe tomography. Mater Today 15:158–165CrossRefGoogle Scholar
  143. 143.
    LaGrange T, Reed BW, Santala MK, McKeown JT, Kulovits A, Wiezorek JMK, Nikolova L, Rosei F, Siwick BJ, Campbell GH (2012) Approaches for ultrafast imaging of transient materials processes in the transmission electron microscope. Micron 43:1108–1120CrossRefGoogle Scholar
  144. 144.
    Kalidindi SR, De Graef M (2015) Materials data science: current status and future outlook. Annu Rev Mater Res 45:171–193CrossRefGoogle Scholar
  145. 145.
    Molinari A, Ahzi S, Kouddane R (1997) On the self-consistent modeling of elastic-plastic behavior of polycrystals. Mech Mater 26:43–62CrossRefGoogle Scholar
  146. 146.
    Lebensohn RA, Canova GR (1997) A self-consistent approach for modelling texture development of two-phase polycrystals: application to titanium alloys. Acta Mater 45:3687–3694CrossRefGoogle Scholar
  147. 147.
    Berbenni S, Favier V, Berveiller M (2007) Impact of the grain size distribution on the yield stress of heterogeneous materials. Int J Plast 23:114–142CrossRefGoogle Scholar
  148. 148.
    Zeghadi A, Forest S, Gourgues AF, Bouaziz O (2007) Ensemble averaging stress-strain fields in polycrystalline aggregates with a constrained surface microstructure-Part 2: crystal plasticity. Philos Mag 87:1425–1446CrossRefGoogle Scholar
  149. 149.
    Schroder J (2014) A numerical two-scale homogenization scheme: the FE\(^2\)-method. In: Schroder J, Hackl K (eds.) Plasticity and beyond, Springer Vienna, vol. 550 of CISM International Centre for Mechanical Sciences, pp 1–64Google Scholar
  150. 150.
    Cailletaud G, Forest S, Jeulin D, Feyel F, Galliet I, Mounoury V, Quilici S (2003) Some elements of microstructural mechanics. Comput Mater Sci 27:351–374CrossRefGoogle Scholar
  151. 151.
    Li Z, Wen B, Zabaras N (2010) Computing mechanical response variability of polycrystalline microstructures through dimensionality reduction techniques. Comput Mater Sci 49:568–581CrossRefGoogle Scholar
  152. 152.
    Guilleminot J, Noshadravan A, Soize C, Ghanem RG (2011) A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures. Comput Method Appl Mech Eng 200:1637–1648CrossRefGoogle Scholar
  153. 153.
    Fullwood DT, Niezgoda SR, Kalidindi SR (2008) Microstructure reconstructions from 2-point statistics using phase-recovery algorithms. Acta Mater 56:942–948CrossRefGoogle Scholar
  154. 154.
    Xu H, Dikin DA, Burkhart C, Chen W (2014) Descriptor-based methodology for statistical characterization and 3D reconstruction of microstructural materials. Comput Mater Sci 85:206–216CrossRefGoogle Scholar
  155. 155.
    Turner DM, Kalidindi SR (2016) Statistical construction of 3-D microstructures from 2-D exemplars collected on oblique sections. Acta Mater 102:136–148CrossRefGoogle Scholar
  156. 156.
    Altendorf H, Latourte F, Jeulin D, Faessel M, Saintoyant L (2014) 3D reconstruction of a multiscale microstructure by anisotropic tessellation models. Image Anal Stereol 33:121–130CrossRefGoogle Scholar
  157. 157.
    Li SF, Suter RM (2013) Adaptive reconstruction method for three-dimensional orientation imaging. J Appl Crystallogr 46:512–524CrossRefGoogle Scholar
  158. 158.
    Lieberman EJ, Rollett AD, Lebensohn RA, Kober EM (2015) Calculation of grain boundary normals directly from 3D microstructure images. Model Simul Mater Sci 23:035005CrossRefGoogle Scholar
  159. 159.
    Herrera-Solaz V, LLorca J, Dogan E, Karaman I, Segurado J (2014) An inverse optimization strategy to determine single crystal mechanical behavior from polycrystal tests: application to AZ31 Mg alloy. Int J Plast 57:1–15Google Scholar
  160. 160.
    Sab K (1992) On the homogenization and the simulation of random materials. Eur J Mech A Solid 5:585–607Google Scholar
  161. 161.
    Bourgeat A, Mikelic A, Wright S (1994) Stochastic two-scale convergence in the mean and applications. J Reine Angew Math 456:19–52Google Scholar
  162. 162.
    Caffarelli LA, Souganidis PE, Wang L (2005) Homogenization of fully nonlinear, uniformly elliptic and parabolic partial differential equations in stationary ergodic media. Commun Pur Appl Math 58:319–361CrossRefGoogle Scholar
  163. 163.
    Bourgeat A, Piatnitski A (2004) Approximations of effective coefficients in stochastic homogenization. Ann I H Poincaré-Pr 40:153–165CrossRefGoogle Scholar
  164. 164.
    Cottereau R (2013) Numerical strategy for unbiased homogenization of random materials. Int J Numer Methods Eng 95:71–90CrossRefGoogle Scholar
  165. 165.
    Koutsourelakis PS (2007) Stochastic upscaling in solid mechanics: an exercise in machine learning. J Comput Phys 226:301–325CrossRefGoogle Scholar
  166. 166.
    Soize C (2008) Tensor-valued random fields for meso-scale stochastic model of anisotropic elastic microstructure and probabilistic analysis of representative volume element size. Probab Eng Mech 23:307–323CrossRefGoogle Scholar
  167. 167.
    Clement A, Soize C, Yvonnet J (2013) Uncertainty quantification in computational stochastic multiscale analysis of nonlinear elastic materials. Comput Methods Appl Mech Eng 254:61–82CrossRefGoogle Scholar
  168. 168.
    Xu XF (2007) A multiscale stochastic finite element method on elliptic problems involving uncertainties. Comput Methods Appl Mech Eng 196:2723–2736CrossRefGoogle Scholar
  169. 169.
    Chevreuil M, Nouy A, Safatly E (2013) A multiscale method with patch for the solution of stochastic partial differential equations with localized uncertainties. Comput Methods Appl Mech Eng 255:255–274CrossRefGoogle Scholar
  170. 170.
    Ben Dhia H (1998) Multiscale mechanical problems: the Arlequin method. Cr Acad Sci II B 326:899–904Google Scholar
  171. 171.
    Cottereau R, Clouteau D, Ben Dhia H, Zaccardi C (2011) A stochastic-deterministic coupling method for continuum mechanics. Comput Methods Appl Mech Eng 200:3280–3288CrossRefGoogle Scholar
  172. 172.
    Le Guennec Y, Cottereau R, Clouteau D, Soize C (2014) A coupling method for stochastic continuum models at different scales. Probab Eng Mech 37:138–147CrossRefGoogle Scholar
  173. 173.
    Puel G, Aubry D (2014) Efficient fatigue simulation using periodic homogenization with multiple time scales. Int J Multiscale Commun 12:291–318CrossRefGoogle Scholar
  174. 174.
    Fish J, Bailakanavar M, Powers L, Cook T (2012) Multiscale fatigue life prediction model for heterogeneous materials. Int J Numer Methods Eng 91:1087–1104CrossRefGoogle Scholar
  175. 175.
    Ren W (2007) Seamless multiscale modeling of complex fluids using fiber bundle dynamics. Commun Math Sci 5:1027–1037CrossRefGoogle Scholar
  176. 176.
    Weinan E, Liu D, Vanden-Eijnden E (2007) Nested stochastic simulation algorithms for chemical kinetic systems with multiple time scales. J Comput Phys 221:158–180CrossRefGoogle Scholar
  177. 177.
    Lao J, Tam MN, Pinisetty D, Gupta N (2013) Molecular dynamics simulation of FCC metallic nanowires: a review. JOM 65:175–184CrossRefGoogle Scholar
  178. 178.
    Romig AD Jr, Dugger MT, McWhorter PJ (2003) Materials issues in microelectromechanical devices: science, engineering, manufacturability and reliability. Acta Mater 51:5837–5866CrossRefGoogle Scholar
  179. 179.
    Lee Z, Ophus C, Fischer LM, Nelson-Fitzpatrick N, Westra KL, Evoy S, Radmilovic V, Dahmen U, Mitlin D (2006) Metallic NEMS components fabricated from nanocomposite Al-Mo films. Nanotechnology 17:3063–3070CrossRefGoogle Scholar
  180. 180.
    Shaw TM, Trolier-McKinstry S, McIntyre PC (2000) The properties of ferroelectric films at small dimensions. Annu Rev Mater Sci 30:263–298CrossRefGoogle Scholar
  181. 181.
    Gianola DS, Eberl C (2009) Micro- and nanoscale tensile testing of materials. JOM 61:24–35CrossRefGoogle Scholar
  182. 182.
    Fleck NA, Deshpande VS, Ashby MF (2010) Micro-architectured materials: past, present and future. Proc R Soc A Math Phys 466:2495–2516CrossRefGoogle Scholar
  183. 183.
    Ashby M (2013) Designing architectured materials. Scr Mater 68:4–7CrossRefGoogle Scholar
  184. 184.
    Embury D, Bouaziz O (2010) Steel-based composites: driving forces and classifications. Annu Rev Mater Res 40:213–241CrossRefGoogle Scholar
  185. 185.
    Ramirez DA, Murr LE, Li SJ, Tian YX, Martinez E, Martinez JL, Machado BI, Mand Gaytan S, Medina F, Wicker RB (2011) Open-cellular copper structures fabricated by additive manufacturing using electron beam melting. Mater Sci Eng A 528:5379–5386CrossRefGoogle Scholar
  186. 186.
    Simonelli M, Tse YY, Tuck C (2014) Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V. Mater Sci Eng A 616:1–11CrossRefGoogle Scholar
  187. 187.
    Kumar KS, Van Swygenhoven H, Suresh S (2003) Mechanical behavior of nanocrystalline metals and alloys. Acta Mater 51:5743–5774CrossRefGoogle Scholar
  188. 188.
    Shimokawa T, Oguro T, Tanaka M, Higashida K, Ohashi T (2014) A multiscale approach for the deformation mechanism in pearlite microstructure: atomistic study of the role of the heterointerface on ductility. Mater Sci Eng A 598:68–76CrossRefGoogle Scholar
  189. 189.
    Van Vliet KJ, Li J, Zhu T, Yip S, Suresh S (2003) Quantifying the early stages of plasticity through nanoscale experiments and simulations, Phys Rev B 67:104105Google Scholar
  190. 190.
    Di Gioacchino F, Clegg WJ (2014) Mapping deformation in small-scale testing. Acta Mater 78:103–113CrossRefGoogle Scholar
  191. 191.
    Pollock TM, LeSar R (2013) The feedback loop between theory, simulation and experiment for plasticity and property modeling. Curr Opin Solid State Mater Sci 17:10–18CrossRefGoogle Scholar
  192. 192.
    Phillips PJ, Brandes MC, Mills MJ, De Graef M (2011) Diffraction contrast STEM of dislocations: imaging and simulations. Ultramicroscopy 111:1483–1487CrossRefGoogle Scholar
  193. 193.
    Coleman SP, Spearot DE (2015) Atomistic simulation and virtual diffraction characterization of homophase and heterophase alumina interfaces. Acta Mater 82:403–413CrossRefGoogle Scholar
  194. 194.
    Stukowski A, Markmann J, Weissmüller J, Albe K (2009) Atomistic origin of microstrain broadening in diffraction data of nanocrystalline solids. Acta Mater 57:1648–1654CrossRefGoogle Scholar
  195. 195.
    Bristowe PD, Sass SL (1980) The atomic structure of a large angle [001] twist boundary in gold determined by a joint computer modelling and X-ray diffraction study. Acta Metall 28:575–588CrossRefGoogle Scholar
  196. 196.
    Bristowe PD, Balluffi RW (1984) Effect of secondary relaxations on diffraction from high-\(\sigma \) [001] twist boundaries. Surf Sci 144:14–27CrossRefGoogle Scholar
  197. 197.
    Oh Y, Vitek V (1986) Structural multiplicity of \(\sigma \) = 5 (001) twist boundaries and interpretation of X-ray diffraction from these boundaries. Acta Metall 34:1941–1953CrossRefGoogle Scholar
  198. 198.
    Higginbotham A, Suggit MJ, Bringa EM, Erhart P, Hawreliak JA, Mogni G, Park N, Remington BA, Wark JS (2013) Molecular dynamics simulations of shock-induced deformation twinning of a body-centered-cubic metal. Phys Rev B 88:104105CrossRefGoogle Scholar
  199. 199.
    Mogni G, Higginbotham A, Gaál-Nagy K, Park N, Wark JS (2014) Molecular dynamics simulations of shock-compressed single-crystal silicon. Phys Rev B 89:064104CrossRefGoogle Scholar
  200. 200.
    Van Swygenhoven H, Budrović Ž, Derlet PM, Frøseth AG, Van Petegem S (2005) In situ diffraction profile analysis during tensile deformation motivated by molecular dynamics. Mater Sci Eng A 400:329–333CrossRefGoogle Scholar
  201. 201.
    Leyssale JM, Da Costa JP, Germain C, Weisbecker P, Vignoles GL (2009) An image-guided atomistic reconstruction of pyrolytic carbons. Appl Phys Lett 95:231912CrossRefGoogle Scholar
  202. 202.
    Robertson AW, Montanari B, He K, Allen CS, Wu YA, Harrison NM, Kirkland AI, Warner JH (2013) Structural reconstruction of the graphene monovacancy. ACS Nano 7:4495–4502CrossRefGoogle Scholar
  203. 203.
    Picard YN, Liu M, Lammatao J, Kamaladasa R, De Graef M (2014) Theory of dynamical electron channeling contrast images of near-surface crystal defects. Ultramicroscopy 146:71–78CrossRefGoogle Scholar
  204. 204.
    Schlesinger S, Crosbie RE, Gagne RE, Innis GS, Lalwani CS, Loch J, Sylvester RJ, Wright RD, Kheir N, Bartos D (1979) Terminology for model credibility. Simulation 32:103–104CrossRefGoogle Scholar
  205. 205.
    National Research Council (2008) Integrated computational materials engineering: a transformational discipline for improved competitiveness and national security. The National Academies Press, Washington, DCGoogle Scholar
  206. 206.
    McDowell D, Olson G (2008) Concurrent design of hierarchical materials and structures. Sci Model Simul 15:207–240CrossRefGoogle Scholar
  207. 207.
    Thacker BH, Doebling SW, Hemez FM, Anderson MC, Pepin JE, Rodriguez EA (2004) Concepts of model verification and validation, Technical Report LA-14167, Los Alamos National LabGoogle Scholar
  208. 208.
    Oberkampf WL, Trucano TG, Hirsch C (2004) Verification, validation, and predictive capability in computational engineering and physics. Appl Mech Rev 57:345–384CrossRefGoogle Scholar
  209. 209.
    Cowles B, Backman D, Dutton R (2012) Verification and validation of ICME methods and models for aerospace applications. Integr Mater Manuf Innov 1:1–16CrossRefGoogle Scholar
  210. 210.
    Wei X, Kysar JW (2012) Experimental validation of multiscale modeling of indentation of suspended circular graphene membranes. Int J Solids Struct 49:3201–3209CrossRefGoogle Scholar
  211. 211.
    Pen HM, Liang YC, Luo XC, Bai QS, Goel S, Ritchie JM (2011) Multiscale simulation of nanometric cutting of single crystal copper and its experimental validation. Comput Mater Sci 50:3431–3441CrossRefGoogle Scholar
  212. 212.
    Gates TS, Odegard GM, Frankland SJV, Clancy TC (2005) Computational materials: multi-scale modeling and simulation of nanostructured materials. Compos Sci Technol 65:2416–2434CrossRefGoogle Scholar
  213. 213.
    Fan J (2011) Multiscale analysis of deformation and failure of materials. Wiley, ChichesterGoogle Scholar
  214. 214.
    Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19CrossRefGoogle Scholar
  215. 215.
    McDowell DL, Gall K, Horstemeyer MF, Fan J (2003) Microstructure-based fatigue modeling of cast A356–T6 alloy. Eng Fract Mech 70:49–80CrossRefGoogle Scholar
  216. 216.
    Horstemeyer MF (2010) Multiscale modeling: a review. In: Shukla MK, Leszczynski J (eds) Practical aspects of computational chemistry. Springer, New York, pp 87–135Google Scholar
  217. 217.
    Chawla N, Deng X (2005) Microstructure and mechanical behavior of porous sintered steels. Mater Sci Eng A 390:98–112CrossRefGoogle Scholar
  218. 218.
    Roberts AP, Garboczi EJ (2001) Elastic moduli of model random three-dimensional closed-cell cellular solids. Acta Mater 49:189–197CrossRefGoogle Scholar
  219. 219.
    Ghosh S, Moorthy S (2004) Three dimensional voronoi cell finite element model for microstructures with ellipsoidal heterogeneties. Comput Mech 34:510–531CrossRefGoogle Scholar
  220. 220.
    Chawla N, Ganesh VV, Wunsch B (2004) Three-dimensional (3D) microstructure visualization and finite element modeling of the mechanical behavior of SiC particle reinforced aluminum composites. Scr Mater 51:161–165CrossRefGoogle Scholar
  221. 221.
    Lewis AC, Geltmacher AB (2006) Image-based modeling of the response of experimental 3D microstructures to mechanical loading. Scr Mater 55:81–85CrossRefGoogle Scholar
  222. 222.
    Maire E, Fazekas A, Salvo L, Dendievel R, Youssef S, Cloetens P, Letang JM (2003) X-ray tomography applied to the characterization of cellular materials: related finite element modeling problems. Compos Sci Technol 63:2431–2443CrossRefGoogle Scholar
  223. 223.
    Youssef S, Maire E, Gaertner R (2005) Finite element modelling of the actual structure of cellular materials determined by X-ray tomography. Acta Mater 53:719–730CrossRefGoogle Scholar
  224. 224.
    Kenesei P, Borbély A, Biermann H (2004) Microstructure based three-dimensional finite element modeling of particulate reinforced metal-matrix composites. Mater Sci Eng A 387–389:852–856CrossRefGoogle Scholar
  225. 225.
    Larson DJ, Gault B, Geiser BP, De Geuser F, Vurpillot F (2013) Atom probe tomography spatial reconstruction: status and directions. Curr Opin Solid State Mater Sci 17:236–247CrossRefGoogle Scholar
  226. 226.
    Prakash A, Guénolé J, Wang J, Müller J, Spiecker E, Mills MJ, Povstugar I, Choi P, Raabe D, Bitzek E (2015) Atom probe informed simulations of dislocation-precipitate interactions reveal the importance of local interface curvature. Acta Mater 92:33–45CrossRefGoogle Scholar
  227. 227.
    Krug ME, Mao Z, Seidman DN, Dunand DC (2014) A dislocation dynamics model of the yield stress employing experimentally-derived precipitate fields in Al-Li-Sc alloys. Acta Mater 79:382–395CrossRefGoogle Scholar
  228. 228.
    Pareige C, Roussel M, Novy S, Kuksenko V, Olsson P, Domain C, Pareige P (2011) Kinetic study of phase transformation in a highly concentrated fe-cr alloy: Monte Carlo simulation versus experiments. Acta Mater 59:2404–2411CrossRefGoogle Scholar
  229. 229.
    Moody MP, Ceguerra AV, Breen AJ, Cui XY, Gault B, Stephenson LT, Marceau RKW, Powles RC, Ringer SP (2014) Atomically resolved tomography to directly inform simulations for structure–property relationships, Nat Commun 5Google Scholar
  230. 230.
    Uchic MD, Dimiduk DM, Florando JN, Nix WD (2004) Sample dimensions influence strength and crystal plasticity. Science 305:986–989CrossRefGoogle Scholar
  231. 231.
    Broderick S, Suh C, Nowers J, Vogel B, Mallapragada S, Narasimhan B, Rajan K (2008) Informatics for combinatorial materials science. JOM 60:56–59CrossRefGoogle Scholar
  232. 232.
    Rajan K, Rajagopalan A, Suh C (2002) Data mining and multivariate analysis in materials science. In: Gaune-Escard M (ed.) Molten salts: from fundamentals to applications, Springer Netherlands, no. 52 in NATO Science Series, pp 241–248Google Scholar
  233. 233.
    Voorhees P, Spanos G, et al (2015) Modeling across scales: a roadmapping study for connecting materials models and simulations across length and time scales. The minerals, metals and materials society (TMS), Technical reportGoogle Scholar
  234. 234.
    Juul Jensen D, Godiksen RBN (2008) Neutron and synchrotron X-ray studies of recrystallization kinetics. Metall Mater Trans A 39A:3065–3069CrossRefGoogle Scholar
  235. 235.
    Babinsky K, De Kloe R, Clemens H, Primig S (2014) A novel approach for site-specific atom probe specimen preparation by focused ion beam and transmission electron backscatter diffraction. Ultramicroscopy 144:9–18CrossRefGoogle Scholar
  236. 236.
    Juan PA, Berbenni S, Capolungo L (2012) Prediction of internal stresses during growth of first-and second-generation twins in Mg and Mg alloys. Acta Mater 60:476–486CrossRefGoogle Scholar
  237. 237.
    Abdolvand H, Majkut M, Oddershede J, Wright JP, Daymond MR (2015) Study of 3-D stress development in parent and twin pairs of a hexagonal close-packed polycrystal: part II-crystal plasticity finite element modeling. Acta Mater 93:235–245CrossRefGoogle Scholar
  238. 238.
    Woo C, Singh B (1992) Production bias due to clustering of point defects in irradiation-induced cascades. Philos Mag A 65:889–912CrossRefGoogle Scholar
  239. 239.
    Marsden W, Cebon D, Cope E (2014) Managing multi-scale material data for access within ICME environments. In: Arnold SM, Wong TT (eds) Models. Databases and simulation tools needed for realization of integrated computational materials engineering, ASM International, pp 82–90Google Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2015

Authors and Affiliations

  • Rémi Dingreville
    • 1
  • Richard A. Karnesky
    • 2
  • Guillaume Puel
    • 3
  • Jean-Hubert Schmitt
    • 3
  1. 1.Sandia National LaboratoriesAlbuquerqueUSA
  2. 2.Sandia National LaboratoriesLivermoreUSA
  3. 3.Laboratoire Mécanique des Sols, Structures et Matériaux (MSSMat), CNRS UMR 8579, Centrale/SupélecUniversité Paris-SaclayChâtenay MalabryFrance

Personalised recommendations