Journal of Materials Science

, Volume 51, Issue 4, pp 1788–1797 | Cite as

Calibration of a multi-phase field model with quantitative angle measurement

  • Johannes Hötzer
  • Oleg Tschukin
  • Marouen Ben Said
  • Marco Berghoff
  • Marcus Jainta
  • Georges Barthelemy
  • Nikolay Smorchkov
  • Daniel Schneider
  • Michael Selzer
  • Britta Nestler
HTC 2015


Over the last years, the phase-field method has been established to model capillarity-induced microstructural evolution in various material systems. Several phase-field models were introduced and different studies proved that the microstructure evolution is crucially affected by the triple junction (TJ’s) mobilities as well as the evolution of the dihedral angles. In order to understand basic mechanisms in multi-phase systems, we are interested in the time evolution of TJ’s, especially in the contact angles in these regions. Since the considered multi-phase systems consist of a high number of grains, it is not feasible to measure the angles at all TJ’s by hand. In this work, we present a method enabling the localization of TJ’s and the measurement of dihedral contact angles in the diffuse interface inherent in the phase-field model. Based on this contact angle measurement method, we show how to calibrate the phase-field model in order to satisfy Young’s law for different contact angles.


Contact Angle Interface Energy Grain Boundary Triple Point Triple Junction 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Boettinger W, Warren J, Beckermann C, Karma A (2002) Phase-field simulation of solidification 1. Ann Rev Mater Res 32(1):163–194CrossRefGoogle Scholar
  2. 2.
    Cogswell DA, Carter WC (2011) Thermodynamic phase-field model for microstructure with multiple components and phases: the possibility of metastable phases. Phys Rev E 83(6):061602–061615. doi: 10.1088/0965-0393/17/7/073001 CrossRefGoogle Scholar
  3. 3.
    Nestler B, Choudhury A (2011) Phase-field modeling of multi-component systems. Curr Opin Solid State Mater Sci 15(3):93–105CrossRefGoogle Scholar
  4. 4.
    Cahn JW, Hilliard JE (1958) Free energy of a nonuniform system. I. Interfacial free energy. J Chem Phys 28(2):258–267CrossRefGoogle Scholar
  5. 5.
    Kobayashi R (1993) Modeling and numerical simulations of dendritic crystal growth. Phys D 63:410–423CrossRefGoogle Scholar
  6. 6.
    Langer JS (1986) Models of pattern formation in first-order phase transitions. Directions in condensed matter. World Scientific, Singapore, pp 165–186Google Scholar
  7. 7.
    Kim SG, Kim WT, Suzuki T (1999) Phase-field model for binary alloys. Phys Rev E 60:7186–7198CrossRefGoogle Scholar
  8. 8.
    Plapp M (2011) Unified derivation of phase-field models for alloy solidification from a grand-potential functional. Phys Rev E 84:031601–031616CrossRefGoogle Scholar
  9. 9.
    Garcke H, Nestler B, Stoth B (1999) A multiphase field concept: numerical simulations of moving phase boundaries and multiple junctions. SIAM J Appl Math 60(1):295–315. doi: 10.1137/S0036139998334895 CrossRefGoogle Scholar
  10. 10.
    Nestler B, Garcke H, Stinner B (2005) Multicomponent alloy solidification: phase-field modeling and simulations. Phys Rev E 71:041609–041615CrossRefGoogle Scholar
  11. 11.
    Chen LQ, Yang W (1994) Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: the grain-growth kinetics. Phys Rev B 50(21):15752–15759CrossRefGoogle Scholar
  12. 12.
    Fan D, Chen LQ (1997) Computer simulation of grain growth using a continuum field model. Acta Mater 45(2):611–622CrossRefGoogle Scholar
  13. 13.
    Garcke H, Nestler B, Stoth B (1998) On anisotropic order parameter models for multi-phase systems and their sharp interface limits. Phys D 115(1):87–108CrossRefGoogle Scholar
  14. 14.
    Steinbach I, Pezzolla F (1999) A generalized field method for multiphase transformations using interface fields. Phys D 134(4):385–393CrossRefGoogle Scholar
  15. 15.
    Steinbach I, Pezzolla F, Nestler B, Seeßelberg M, Prieler R, Schmitz G, Rezende J (1996) A phase field concept for multiphase systems. Phys D 94(3):135–147CrossRefGoogle Scholar
  16. 16.
    Warren JA, Kobayashi R, Lobkovsky AE, Carter WC (2003) Extending phase field models of solidification to polycrystalline materials. Acta Mater 51(20):6035–6058CrossRefGoogle Scholar
  17. 17.
    Lu Y, Zhang L, Zhou Y, Chen Z, Zhang J (2013) Phase-field study for texture evolution in polycrystalline materials under applied stress. J Mater Sci Technol 29(10):999–1004CrossRefGoogle Scholar
  18. 18.
    Ravash H, Vleugels J, Moelans N (2014) Three-dimensional phase-field simulation of microstructural evolution in three-phase materials with different diffusivities. J Mater Sci 49(20):7066–7072. doi: 10.1007/s10853-014-8411-0 CrossRefGoogle Scholar
  19. 19.
    Ahmed K, Allen T, El-Azab A (2015) Phase field modeling for grain growth in porous solids. J Mater Sci. doi: 10.1007/s10853-015-9107-9 Google Scholar
  20. 20.
    McKenna I, Gururajan M, Voorhees P (2009) Phase field modeling of grain growth: effect of boundary thickness, triple junctions, misorientation, and anisotropy. J Mater Sci 44(9):2206–2217. doi: 10.1007/s10853-008-3196-7 CrossRefGoogle Scholar
  21. 21.
    Moelans N, Wendler F, Nestler B (2009) Comparative study of two phase-field models for grain growth. Comput Mater Sci 46(2):479–490CrossRefGoogle Scholar
  22. 22.
    Johnson A, Voorhees P (2014) A phase-field model for grain growth with trijunction drag. Acta Mater 67:134–144CrossRefGoogle Scholar
  23. 23.
    Gottstein G, King A, Shvindlerman L (2000) The effect of triple-junction drag on grain growth. Acta Mater 48(2):397–403CrossRefGoogle Scholar
  24. 24.
    Caroli C, Misbah C (1997) On static and dynamical Young’s condition at a trijunction. J Phys I 7(10):1259–1265Google Scholar
  25. 25.
    Guo W, Steinbach I (2010) Multi-phase field study of the equilibrium state of multi-junctions. Int J Mater Res 101(4):382–388. doi: 10.3139/146.110298 CrossRefGoogle Scholar
  26. 26.
    Holm E, Srolovitz DJ, Cahn J (1993) Microstructural evolution in two-dimensional two-phase polycrystals. Acta Metall Mater 41(4):1119–1136CrossRefGoogle Scholar
  27. 27.
    Wheeler AA, Boettinger WJ, McFadden GB (1992) Phase-field model for isothermal phase transitions in binary alloys. Phys Rev E 45:7424–7451CrossRefGoogle Scholar
  28. 28.
    Choudhury A, Nestler B (2012) Grand-potential formulation for multicomponent phase transformations combined with thin-interface asymptotics of the double-obstacle potential. Phys Rev E 85:021602–021618CrossRefGoogle Scholar
  29. 29.
    Moelans N, Blanpain B, Wollants P (2008) An introduction to phase-field modeling of microstructure evolution. Calphad 32(2):268–294CrossRefGoogle Scholar
  30. 30.
    Vondrous A, Selzer M, Hötzer J, Nestler B (2014) Parallel computing for phase-field models. Int J High Perform C 28(1):1–12. doi: 10.1177/1094342013490972 CrossRefGoogle Scholar
  31. 31.
    Stinner B, Nestler B, Garcke H (2004) A diffuse interface model for alloys with multiple components and phases. SIAM J Appl Math 64(3):775–799CrossRefGoogle Scholar
  32. 32.
    Chen Y, Ye X (2011) Projection onto a simplex, arXiv preprint arXiv:1101.6081, pp 1–7
  33. 33.
    Wendler F, Becker JK, Nestler B, Bons PD, Walte NP (2009) Phase-field simulations of partial melts in geological materials. Comput Geosci 35(9):1907–1916CrossRefGoogle Scholar
  34. 34.
    Adams BL, Ta’Asan S, Kinderlehrer D, Livshits I, Mason D, Wu CT, Mullins W, Rohrer G, Rollett A, Saylor D (1999) Extracting grain boundary and surface energy from measurement of triple junction geometry. Interface Sci 7(3–4):321–337CrossRefGoogle Scholar
  35. 35.
    Stinner B (2006) Derivation and analysis of a phase field model for alloy solidification, Dissertation, University of RegensburgGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Johannes Hötzer
    • 1
    • 2
  • Oleg Tschukin
    • 2
  • Marouen Ben Said
    • 1
  • Marco Berghoff
    • 1
  • Marcus Jainta
    • 1
  • Georges Barthelemy
    • 1
  • Nikolay Smorchkov
    • 1
  • Daniel Schneider
    • 1
  • Michael Selzer
    • 1
    • 2
  • Britta Nestler
    • 1
    • 2
  1. 1.Institut für Angewandte Materialien, Computational Materials Science (IAM-CMS)Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Institute of Materials and ProcessesKarlsruhe University of Applied SciencesKarlsruheGermany

Personalised recommendations