Journal of Materials Science

, Volume 51, Issue 5, pp 2320–2329 | Cite as

Fabrication of carbon nanotube/cobalt oxide nanocomposites via electrophoretic deposition for supercapacitor electrodes

  • Nagesh Kumar
  • Yun-Cheng Yu
  • Yi Hsuan Lu
  • Tseung Yuen Tseng
Original Paper


The cobalt oxide and carbon nanotubes (Co3O4/CNTs) nanocomposites are successfully synthesized using hydrothermal method. The as-synthesized nanocomposite materials are utilized in the electrophoretic deposition (EPD) to fabricate the electrodes, whose electrochemical properties are investigated in a three-electrode configuration cell with 1 M KOH electrolyte. By adjusting the precursor concentration, reaction time in hydrothermal process, and annealing temperature, the optimum conditions are obtained. From the experimental results, when the cobalt nitrate concentration is taken as 2 mmol, reaction time is 8 h, and the temperature is maintained at 180 °C in the hydrothermal process, the synthesized Co3O4/CNTs nanocomposites shows the highest specific capacitance of 705 F g−1 at a charging current of 3 A g−1. Besides, the binder-free electrode preparation through EPD has effectively reduced the inner resistance of the electrode and makes the cycle stability excellent.


Specific Capacitance Co3O4 Cobalt Oxide High Specific Capacitance Electrophoretic Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Ministry of Science and Technology of Taiwan under Contract No. 102-2221-E-009-044-MY3.


  1. 1.
    Sevilla M, Mokaya R (2014) Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ Sci 7:1250–1280CrossRefGoogle Scholar
  2. 2.
    Abruna HD, Kiya Y, Henderson JC (2008) Batteries and electrochemical capacitors. Phys Today 61:43–47CrossRefGoogle Scholar
  3. 3.
    Wang Y, Xia Y (2013) Recent progress in supercapacitors: from materials design to system construction. Adv Mater 25:5336–5342CrossRefGoogle Scholar
  4. 4.
    Conway BE, Pell WG (2003) Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. J Solid State Electrochem 7:637–644CrossRefGoogle Scholar
  5. 5.
    Wei H, Zhu J, Wu S et al (2013) Electrochromic polyaniline/graphite oxide nanocomposites with endured electrochemical energy storage. Polymer 54:1820–1831CrossRefGoogle Scholar
  6. 6.
    Li Z, Zhou Z, Yun G et al (2013) High-performance solid-state supercapacitors based on graphene-ZnO hybrid nanocomposites. Nanoscale Res Lett 8:473CrossRefGoogle Scholar
  7. 7.
    Arabale G, Wagh D, Kulkarni M et al (2003) Enhanced supercapacitance of multiwalled carbon nanotubes functionalized with ruthenium oxide. Chem Phys Lett 376:207–213CrossRefGoogle Scholar
  8. 8.
    Zhou R, Meng C, Zhu F et al (2010) High-performance supercapacitors using a nanoporous current collector made from super-aligned carbon nanotubes. Nanotechnology 21:345701–345707CrossRefGoogle Scholar
  9. 9.
    Xiong S, Yuan C, Zhang X et al (2009) Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors. Chemistry 15:5320–5326CrossRefGoogle Scholar
  10. 10.
    Sivakkumar SR, Ko JM, Kim DK et al (2007) Performance evaluation of CNT/polypyrrole/MnO2 composite electrodes for electrochemical capacitors. Electrochim Acta 52:7377–7385CrossRefGoogle Scholar
  11. 11.
    Li QY, Li ZS, Lin L et al (2010) Facile synthesis of activated carbon/carbon nanotubes compound for supercapacitor application. Chem Eng J 156:500–504CrossRefGoogle Scholar
  12. 12.
    Hung CJ, Hung JH, Lin P, Tseng TY (2011) Electrophoretic fabrication and characterizations of manganese oxide/carbon nanotube nanocomposite pseudocapacitors. J Electrochem Soc 158:A942–A947CrossRefGoogle Scholar
  13. 13.
    Adekunle AS, Ozoemena KI, Agboola BO (2013) MWCNTs/metal (Ni Co, Fe) oxide nanocomposite as potential material for supercapacitors application in acidic and neutral media. J Solid State Electrochem 17:1311–1320CrossRefGoogle Scholar
  14. 14.
    Fisher RA, Watt MR, Ready WJ (2013) Functionalized carbon nanotube supercapacitor electrodes: a review on pseudocapacitive materials. ECS J Solid State Sci Technol 2(10):M3170–M3177CrossRefGoogle Scholar
  15. 15.
    Abdolmaleki A, Kazerooni H, Gholivand MB et al (2015) Facile electrostatic coprecipitation of f-SWCNT/Co3O4 nanocomposite as supercapacitor material. Ionics 21:515–523CrossRefGoogle Scholar
  16. 16.
    Guan C, Qian X, Wang X et al (2015) Atomic layer deposition of Co3O4 on carbon nanotubes/carbon cloth for high-capacitance and ultrastable supercapacitor electrode. Nanotechnology 26:094001–094007CrossRefGoogle Scholar
  17. 17.
    Lu W, Hartman R, Qu L, Dai L (2011) Nanocomposite electrodes for high-performance supercapacitors. J Phys Chem Lett 2:655–660CrossRefGoogle Scholar
  18. 18.
    Yuksel R, Sarioba Z, Cirpan A et al (2014) Transparent and flexible supercapacitors with single walled carbon nanotube thin film electrodes. ACS Appl Mater Interfaces 6:15434–15439Google Scholar
  19. 19.
    Wang S, Dryfe RAW (2013) Graphene oxide-assisted deposition of carbon nanotubes on carbon cloth as advanced binder-free electrodes for flexible supercapacitors. J Mater Chem A 1:5279–5283CrossRefGoogle Scholar
  20. 20.
    Hung CJ, Lin P, Tseng TY (2013) Electrophoretic fabrication and pseudocapacitive properties of graphene/manganese oxide/carbon nanotube nanocomposites. J Power Sources 243:594–602CrossRefGoogle Scholar
  21. 21.
    Farhadi S, Pourzare K (2012) Simple and low temperature preparation of Co3O4 sphere-like nanoparticles via solid-state thermolysis of the [Co(NH3)6](NO3)3 complex. Mater Res Bull 47:1550–1556CrossRefGoogle Scholar
  22. 22.
    Gaber A, Abdel-Rahim MA, Abdel-Latief AY et al (2014) Influence of calcination temperature on the structure and porosity of nanocrystalline SnO2 synthesized by a conventional precipitation method. Int J Electrochem Sci 9:81–95Google Scholar
  23. 23.
    Lee G, Varanasi CV, Liu J et al (2015) Effects of morphology and chemical doping on electrochemical properties of metal hydroxides in pseudocapacitors. Nanoscale 7:3181–3188CrossRefGoogle Scholar
  24. 24.
    Kondrat S, Wu P, Qiao R, Kornyshev AA (2014) Accelerating charging dynamics in subnanometre pores. Nat Mater 13:387–393CrossRefGoogle Scholar
  25. 25.
    Lv M, Liu K, Li Y et al (2014) Facile synthesis of Co3O4/mildly oxidized multiwalled carbon nanotubes/reduced mildly oxidized graphene oxide ternary composite as the material for supercapacitors. Bull Korean Chem Soc 35:1349–1355CrossRefGoogle Scholar
  26. 26.
    Singh BP, Singh D, Mathur RB et al (2008) Influence of surface modified MWCNTs on the mechanical, electrical and thermal properties of polyimide nanocomposites. Nanoscale Res Lett 3:444–453CrossRefGoogle Scholar
  27. 27.
    Zhuo L, Wu Y, Ming J et al (2013) Facile synthesis of a Co3O4–carbon nanotube composite and its superior performance as an anode material for Li-ion batteries. J Mater Chem A 1:1141–1147CrossRefGoogle Scholar
  28. 28.
    Cao L, Lu M, Li HL (2005) Preparation of mesoporous nanocrystalline Co3O4 and its applicability of porosity to the formation of electrochemical capacitance. J Electrochem Soc 152:A871–A875CrossRefGoogle Scholar
  29. 29.
    Atieh MA, Bakather OY, Tawbini BA et al (2010) Effect of carboxylic functional group functionalized on carbon nanotubes surface on the removal of lead from water. Bioinorg Chem Appl 603978:1–9CrossRefGoogle Scholar
  30. 30.
    Wang G, Sarkar P, Nicholson PS (1997) Influence of acidity on the electrostatic stability of alumina suspensions in ethanol. J Am Ceram Soc 80:965–972CrossRefGoogle Scholar
  31. 31.
    Simate GS, Iyuke SE, Ndlovu S et al (2012) The heterogeneous coagulation and flocculation of brewery waste water using carbon nanotubes. Water Res 46:1185–1197CrossRefGoogle Scholar
  32. 32.
    Ghosh D, Giri S, Das CK (2013) Preparation of CTAB-assisted hexagonal platelet Co(OH)2/graphene hybrid composite as efficient supercapacitor electrode material. ACS Sustain Chem Eng 1:1135–1142CrossRefGoogle Scholar
  33. 33.
    Cheng Q, Tang J, Ma J et al (2011) Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon 49:2917–2925CrossRefGoogle Scholar
  34. 34.
    Zhu L, Wu W, Zhu Y et al (2015) Composite of CoOOH nanoplates with multiwalled carbon nanotubes as superior cathode material for supercapacitors. J Phys Chem C 119:7069–7075CrossRefGoogle Scholar
  35. 35.
    Rakhi RB, Chen W, Cha D (2012) Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Lett 12:2559–2567CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Nagesh Kumar
    • 1
  • Yun-Cheng Yu
    • 1
  • Yi Hsuan Lu
    • 1
  • Tseung Yuen Tseng
    • 1
  1. 1.Department of Electronics Engineering and Institute of ElectronicsNational Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations