Advertisement

Journal of Materials Science

, Volume 51, Issue 3, pp 1409–1417 | Cite as

Densification contribution as a function of strain rate under indentation of terbium-doped aluminophosphate glass

  • Olga Shikimaka
  • Daria Grabco
  • Bogdan Alexandru Sava
  • Mihail Elisa
  • Lucica Boroica
  • Evghenii Harea
  • Constantin Pyrtsac
  • Andrian Prisacaru
  • Zinaida Barbos
Original Paper

Abstract

In this work, the strain rate effect on the deformation processes under Berkovich indentation of Tb-doped aluminophosphate glass has been investigated. It is shown that both densification and shear flow, adopted as main mechanisms of plastic deformation for oxide glasses, are strain rate sensitive. Moreover, the shear flow is assumed to be responsible for the strain rate sensitivity of densification. The densification contribution to the total plastic deformation is found to be greater for lower strain rate, and the same tendency is observed for the plastic flow. This, in turn, leads to the influence of the strain rate on the hardness values, manifesting as a softening of the glassy matrix with the decrease of strain rate caused by more intensive development of the densification and shear flow. The decrease of hardness with load increase is attributed to the involving and increasing contribution of the shear flow and fracture to the total deformation process.

Keywords

Shear Flow Strain Rate Sensitivity Silica Glass Phosphate Glass Indentation Size Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to acknowledge T. Braniste, National Center for Materials Study and Testing, Technical University of Moldova, for AFM measurements. This work was supported by SCSTD Academy of Sciences of Moldova—project No. 15.817.02.06A and Bilateral Collaborative Program between ASM and UEFISCDI-Romania—project No. 13.820.05.20/RoF, contract 20/RoF (Moldova Republic), and 695/2012 (Romania), as well as contract 186/2012—Partnership Program (UEFISCDI-Romania) and M-ERA.NET 7-081/2013 MAGPHOGLAS project.

References

  1. 1.
    Salama SN, El-Batal HA (1994) Microhardness of phosphate glasses. J Non-Cryst Solids 168:179–185CrossRefGoogle Scholar
  2. 2.
    Gilman JJ (1973) Flow via dislocations in ideal glasses. J Appl Phys 44:675–679CrossRefGoogle Scholar
  3. 3.
    Argon AS (1979) Plastic deformation in metallic glasses. Acta Metall 27(1):47–58CrossRefGoogle Scholar
  4. 4.
    Peng HL, Li MZ, Wang WH (2011) Structural signature of plastic deformation in metallic glasses. Phys Rev Lett 106:135503-1–135503-4CrossRefGoogle Scholar
  5. 5.
    Hagan JT, Van Der Zwaag S (1984) Plastic processes in a range of soda–lime–silica glasses. J Non-Cryst Solids 64:249–268CrossRefGoogle Scholar
  6. 6.
    Pan D, Yokoyama Y, Fujita T, Liu YH, Kohara S, Inoue A, Chen MW (2009) Correlation between structural relaxation and shear transformation zone volume of a bulk metallic glass. Appl Phys Lett 95(141909):1–3Google Scholar
  7. 7.
    Zhu ZG, Wen P, Wang DP, Xue RJ, Zhao DQ, Wang WH (2013) Characterization of flow units in metallic glass through structural relaxations. J Appl Phys 114:083512CrossRefGoogle Scholar
  8. 8.
    Rouxel T, Ji H, Keryvin V, Hammouda T, Yoshida S (2008) Poisson’s ratio and the glass network topology—relevance to high pressure densification and indentation behavior. Adv Mater Res 39–40:137–146CrossRefGoogle Scholar
  9. 9.
    Kermouche G, Barthel E, Vandembroucq D, Dubujet Ph (2008) Mechanical modeling of indentation-induced densification in amorphous silica. Acta Mater 56(13):3222–3228CrossRefGoogle Scholar
  10. 10.
    Yoshida S, SangLeboeuf J-C, Rouxel T (2005) Quantitative evaluation of indentation-induced densification in glass. J Mater Res 20(12):3404–3412CrossRefGoogle Scholar
  11. 11.
    Hermansen C, Matsuoka J, Yoshida S, Yamazaki H, Kato Y, Yue YZ (2013) Densification and plastic deformation under microindentation in silicate glasses and the relation to hardness and crack resistance. J Non-Cryst Solids 364:40–43CrossRefGoogle Scholar
  12. 12.
    Peter KW (1970) Densification and flow phenomena of glass in indentation experiments. J Non-Cryst Solids 5:103–115CrossRefGoogle Scholar
  13. 13.
    Yoshida S, Sawasato H, Sugawara T, Miura Y, Matsuoka J (2010) Effects of indenter geometry on indentation-induced densification of soda-lime glass. J Mater Res 25(11):2203–2211CrossRefGoogle Scholar
  14. 14.
    Shikimaka O, Grabco D (2008) Deformation created by Berkovich and Vickers indenters and its influence on surface morphology of indentations for LiF and CaF2 single crystals. J Phys D Appl Phys 41(074012):1–6Google Scholar
  15. 15.
    Pan D, Chen MW (2009) Rate-change instrumented indentation for measuring strain rate sensitivity. J Mater Res 24(4):1466–1470CrossRefGoogle Scholar
  16. 16.
    Wei B, Zhang T, Li W, Xing D, Zhang L, Wang Y (2005) Indentation creep behavior in Ce-based bulk metallic glasses at room temperature. Mater Trans 46(12):2959–2962CrossRefGoogle Scholar
  17. 17.
    Xu F, Long Z, Deng X, Zhang P (2013) Loading rate sensitivity of nanoindentation creep behavior in a Fe-based bulk metallic glass. Trans Nonferrous Met Soc China 23:1646–1651CrossRefGoogle Scholar
  18. 18.
    Limbach R, Rodrigues BP, Wondraczek L (2014) Strain-rate sensitivity of glasses. J Non-Cryst Solids 404:124–134CrossRefGoogle Scholar
  19. 19.
    Chakraborty R, Dey A, Mukhopadhyay AK (2010) Loading rate effect on nanohardness of soda-lime-silica glass. Metall Mater Trans A 41A:1301–1312CrossRefGoogle Scholar
  20. 20.
    Elisa M, Sava BA, Vasiliu IC, Monteiro RCC, Iordanescu CR, Feraru I, Ghervase L, Tanaselia C, Senila M, Abraham B (2013) Investigations on optical, structural and thermal properties of phosphate glasses containing terbium ions. IOP Conf Series: Mater Sci Eng 47(012025):1–8Google Scholar
  21. 21.
    Soares RS, Monteiro RCC, Lima MMRA, Sava BA, Elisa M (2014) Phase transformation and microstructural evolution after heat treatment of a terbium-doped lithium–aluminum phosphate glass. J Mater Sci 49(13):4601–4611. doi: 10.1007/s10853-014-8162-y CrossRefGoogle Scholar
  22. 22.
    Karabulut M, Melnik E, Stefan R, Marasinghe GK, Ray CS, Kurkjian CR, Day DE (2001) Mechanical and structural properties of phosphate glasses. J Non-Cryst Solids 288:8–17CrossRefGoogle Scholar
  23. 23.
    Grabco D, Shikimaka O, Elisa M, Sava BA, Boroica L, Pyrtsak K, Prisacaru A, Danitsa Z, Feraru I, Ursu D (2012) Features of the mechanical properties of phosphate glasses doped with rare earth elements under indentation. Surf Eng Appl Electrochem 48(4):365–374CrossRefGoogle Scholar
  24. 24.
    Sava BA, Elisa M, Boroica L, Monteiro RCC (2013) Preparation method and thermal properties of samarium and europium-doped alumino-phosphate glasses. Mater Sci Eng B Adv Funct Solid-State Mater 178:1429–1435CrossRefGoogle Scholar
  25. 25.
    Elisa M, Sava BA, Vasiliu IC, Carstea EM, Feraru I, Tanaselia C, Senila M, Abraham B (2012) Optical and structural characterization of Eu3+, Dy3+, Ho3+ and Tm3+-doped phosphate glasses, Phys. Chem. Glasses: Eur J Glass Sci Technol B 53(5):219–224Google Scholar
  26. 26.
    Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583CrossRefGoogle Scholar
  27. 27.
    Meade C, Hemley RJ, Mao HK (1992) High-pressure x-ray diffraction of SiO2 glass. Phys Rev Lett 69:1387–1390CrossRefGoogle Scholar
  28. 28.
    Lacks DJ (2000) First-order amorphous-amorphous transformation in silica. Phys Rev Lett 84:4629–4632CrossRefGoogle Scholar
  29. 29.
    Champagnon B, Martinet C, Coussa C, Deschamps T (2007) Polyamorphism: path to new high density glasses at ambient conditions. J Non-Cryst Solids 353:4208–4211CrossRefGoogle Scholar
  30. 30.
    Vandembroucq D, Deschamps T, Coussa C, Perriot A, Barthel E, Champagnon B, Martinet C (2008) Density hardening plasticity and mechanical aging of silica glass under pressure: a Raman spectroscopic study. J Phys: Condens Matter 20(485221):1–6Google Scholar
  31. 31.
    Perriot A, Vandembroucq D, Barthel E, Martinez V, Grosvalet L, Martinet Ch, Champagnon B (2006) Raman microspectroscopic characterization of amorphous silica plastic behavior. J Am Ceram Soc 89:596–601CrossRefGoogle Scholar
  32. 32.
    Buchner S, Pereira AS, Lima JC, Balzaretti NM (2014) X-ray study of lithium disilicate glass: high pressure densification and polyamorphism. J Non-Cryst Solids 387:112–116CrossRefGoogle Scholar
  33. 33.
    Keryvin V, Gicquel S, Charleux L, Guin J-P, Nivard M, Sangleboeuf J-C (2014) Densification as the only mechanism at stake during indentation of silica glass? Key Eng Mater 606:53–60CrossRefGoogle Scholar
  34. 34.
    Faivre A, Despetis F, Guillaume F, Solignac P (2010) Role of mobile cations on microplasticity in alumino-phosphate glasses. J Am Ceram Soc 93(10):2986–2989CrossRefGoogle Scholar
  35. 35.
    Rouxel T (2007) Elastic properties and short-to-medium range order in glasses. J Am Ceram Soc 90:3019–3039CrossRefGoogle Scholar
  36. 36.
    Kubin LP, Mortensen A (2003) Geometrically necessary dislocations and strain-gradient plasticity: a few critical issues. Scripta Mater 48:119–125CrossRefGoogle Scholar
  37. 37.
    Beegan D, Chowdhury S, Laugier MT (2008) Modification of composite hardness models to incorporate indentation size effects in thin films. Thin Solid Films 516:3813–3817CrossRefGoogle Scholar
  38. 38.
    Liu Y, Ngan AHW (2001) Depth dependence of hardness in copper single crystals measured by nanoindentation. Scripta Mater 44:237–241CrossRefGoogle Scholar
  39. 39.
    Li N, Chan KC, Liu L (2008) The indentation size effect in Pd40Cu30Ni10P20 bulk metallic glass. J Phys D Appl Phys 41:155415CrossRefGoogle Scholar
  40. 40.
    Quinn JB, Quinn GD (1997) Indentation brittleness of ceramics: a fresh approach. J Mater Sci 32:4331–4346. doi: 10.1023/A:1018671823059 CrossRefGoogle Scholar
  41. 41.
    Gao YX, Fan H (2002) A micro-mechanism based analysis for size-dependent indentation hardness. J Mater Sci 37:4493–4498. doi: 10.1023/A:1020662215932 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Olga Shikimaka
    • 1
  • Daria Grabco
    • 1
  • Bogdan Alexandru Sava
    • 2
  • Mihail Elisa
    • 3
  • Lucica Boroica
    • 2
  • Evghenii Harea
    • 1
  • Constantin Pyrtsac
    • 1
  • Andrian Prisacaru
    • 1
  • Zinaida Barbos
    • 1
  1. 1.Institute of Applied PhysicsAcademy of Sciences of MoldovaChisinauRepublic of Moldova
  2. 2.Laser DepartmentNational Institute for Lasers, Plasma and Radiation PhysicsMagurele - BucharestRomania
  3. 3.Department of OptospintronicsInstitute of Research and Development for Optoelectronics INOE2000Magurele - BucharestRomania

Personalised recommendations