Journal of Materials Science

, Volume 51, Issue 2, pp 989–999 | Cite as

CeO2 and Y2O3 as nucleation inhibitors in lithium disilicate glasses

Original Paper


Stoichiometric lithium disilicate glasses were doped with up to 3 mol% CeO2 or Y2O3 and the nucleation and crystal growth kinetics were determined as a function of temperature using in situ hot-stage microscopy. The additives led to a decrease of the steady-state nucleation rates by up to two orders of magnitude and a remarkable increase of the induction time. Moreover, the crystal growth velocities are notably decreased, while the activation energy for crystal growth increases. The cerium-containing samples were analyzed by fluorescence microscopy and spectroscopy, scanning electron microscopy as well as cathodoluminescence measurements. The lithium disilicate crystals consist of fine lamellae separated from each other by a cerium-enriched residual glassy matrix and the crystallization front is enriched by the added oxide. As a result, CeO2 and Y2O3 act as nucleation inhibitors in lithium disilicate glass.


Cerium CeO2 Y2O3 Nucleation Rate Crystallization Front 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Sven Schönherr from the Institute for Solid State Physics, Jena University, for the cathodoluminescence and EDX measurements.


  1. 1.
    James P (1974) Kinetics of crystal nucleation in lithium silicate glasses. Phys Chem Glas 15:95–105Google Scholar
  2. 2.
    Zanotto ED, James PF (1985) Experimental tests of the classical nucleation theory for glasses. J Non-Cryst Solids 74:373–394CrossRefGoogle Scholar
  3. 3.
    Barker MF, Wang T-H, James PF (1988) Nucleation and growth kinetics of lithium disilicate and lithium metasilicate in lithia-silica glasses. Phys Chem Glas 29:240–248Google Scholar
  4. 4.
    Deubener J, Brückner R, Sternitzke M (1993) Induction time analysis of nucleation and crystal growth in di- and metasilicate glasses. J Non-Cryst Solids 163:1–12CrossRefGoogle Scholar
  5. 5.
    Burgner LL, Weinberg MC (2001) An assessment of crystal growth behavior in lithium disilicate glass. J Non-Cryst Solids 279:28–43CrossRefGoogle Scholar
  6. 6.
    Fernandes HR, Tulyaganov DU, Ferreira JMF (2013) The role of P2O5, TiO2 and ZrO2 as nucleating agents on microstructure and crystallization behaviour of lithium disilicate-based glass. J Mater Sci 48:765–773CrossRefGoogle Scholar
  7. 7.
    Krüger S, Deubener J, Ritzberger C, Höland W (2013) Nucleation kinetics of lithium metasilicate in ZrO2-bearing lithium disilicate glasses for dental application. Int J Appl Glass Sci 4:9–19CrossRefGoogle Scholar
  8. 8.
    Huang S, Zhang B, Huang Z et al (2013) Crystalline phase formation, microstructure and mechanical properties of a lithium disilicate glass–ceramic. J Mater Sci 48:251–257CrossRefGoogle Scholar
  9. 9.
    Dittmer M, Müller M, Rüssel C (2010) Self-organized nanocrystallinity in MgO–Al2O3–SiO2 glasses with ZrO2 as nucleating agent. Mater Chem Phys 124:1083–1088CrossRefGoogle Scholar
  10. 10.
    Dittmer M, Rüssel C (2012) Colorless and high strength MgO/Al2O3/SiO2 glass–ceramic dental material using zirconia as nucleating agent. J Biomed Mater Res, Part B 100B:463–470CrossRefGoogle Scholar
  11. 11.
    Gawronski A, Rüssel C (2013) High strength glass–ceramics in the system MgO/Y2O3/Al2O3/SiO2/ZrO2 without quartz as crystalline phase. J Mater Sci 48:3461–3468CrossRefGoogle Scholar
  12. 12.
    Hsu J-Y, Speyer RF (1990) Influences of zirconia and silicon nucleating agents on the devitrification of Li2O Al2O3 6SiO2 glasses. J Am Ceram Soc 73:3585–3593CrossRefGoogle Scholar
  13. 13.
    Hu A-M, Liang K-M, Wang G et al (2004) Effect of nucleating agents on the crystallization of Li2O-Al2O3-SiO2 system glass. J Therm Anal Calorim 78:991–997CrossRefGoogle Scholar
  14. 14.
    Thieme K, Rüssel C (2015) Nucleation and growth kinetics and phase analysis in zirconia-containing lithium disilicate glass. J Mater Sci 50:1488–1499CrossRefGoogle Scholar
  15. 15.
    Singh K, Gupta N, Pandey OP (2007) Effect of Y2O3 on the crystallization behavior of SiO2–MgO–B2O3–Al2O3 glasses. J Mater Sci 42:6426–6432CrossRefGoogle Scholar
  16. 16.
    Kumar V, Rupali Pandey OP, Singh K (2011) Thermal and crystallization kinetics of yttrium and lanthanum calcium silicate glass sealants for solid oxide fuel cells. Int J Hydrog Energy 36:14971–14976CrossRefGoogle Scholar
  17. 17.
    Zheng W, Cheng J, Tang L et al (2007) Effect of Y2O3 addition on viscosity and crystallization of the lithium aluminosilicate glasses. Thermochim Acta 456:69–74CrossRefGoogle Scholar
  18. 18.
    Gawronski A, Patzig C, Höche T, Rüssel C (2013) High-strength glass-ceramics in the system MgO/Al2O3/SiO2/ZrO2/Y2O3—microstructure and properties. CrystEngComm 15:6165–6176CrossRefGoogle Scholar
  19. 19.
    Zdaniewski W (1975) DTA and X-ray analysis study of nucleation and crystallization of MgO-Al2O3-SiO2 glasses containing ZrO2, TiO2, and CeO2. J Am Ceram Soc 58:163–169CrossRefGoogle Scholar
  20. 20.
    Sohn S-B, Choi S-Y (2001) Crystallization behavior in the glass system MgO–Al2O3–SiO2: influence of CeO2 addition. J Non-Cryst Solids 282:221–227CrossRefGoogle Scholar
  21. 21.
    Gawronski A, Patzig C, Höche T, Rüssel C (2014) Effect of Y2O3 and CeO2 on the crystallisation behaviour and mechanical properties of glass–ceramics in the system MgO/Al2O3/SiO2/ZrO2. J Mater Sci 50:1986–1995CrossRefGoogle Scholar
  22. 22.
    Thieme K, Rüssel C (2014) Nucleation inhibitors - The effect of small concentrations of Al2O3, La2O3 or TiO2 on nucleation and crystallization of lithium disilicate. J Eur Ceram Soc 34:3969–3979CrossRefGoogle Scholar
  23. 23.
    Paul A, Douglas RW (1965) Cerous ceric equilibrium in binary alkali borate and alkali silicate glasses. Phys Chem Glas 6:212–215Google Scholar
  24. 24.
    Schreiber HD, Lauer HV Jr, Thanyasiri T (1980) The redox state of cerium in basaltic magmas: an experimental study of iron-cerium interactions in silicate melts. Geochim Cosmochim Acta 44:1599–1612CrossRefGoogle Scholar
  25. 25.
    Herrmann A, Othman HA, Assadi AA et al (2015) Spectroscopic properties of cerium-doped aluminosilicate glasses. Opt Mater Express 5:720–732CrossRefGoogle Scholar
  26. 26.
    Johnston WD (1965) Oxidation-reduction equilibria in molten Na2O 2SiO2 glass. J Am Ceram Soc 48:184–190CrossRefGoogle Scholar
  27. 27.
    Weber MJ (1973) Nonradiative decay from 5d states of rare earths in crystals. Solid State Commun 12:741–744CrossRefGoogle Scholar
  28. 28.
    Garcìa MA, Llopis J, Villegas MA, Paje SE (2001) Influence of annealing on optical properties of cerium doped soda-lime-silicate glasses. J Alloys Compd 323–324:367–371CrossRefGoogle Scholar
  29. 29.
    Thieme K, Rüssel C (2015) The effect of niobium- and tantalum oxide on nucleation and growth kinetics in lithium disilicate glasses. Mater Chem Phys 162:354–363CrossRefGoogle Scholar
  30. 30.
    Matusita K, Tashiro M (1973) Effect of added oxides on the crystallisation of Li2O SiO2 glasses. Phys Chem Glas 14:77–80Google Scholar
  31. 31.
    Schlesinger ME, Lynch DC (1989) Effect of VB and VIB oxides on nucleation parameters in lithium disilicate glass. J Non-Cryst Solids 108:237–248CrossRefGoogle Scholar
  32. 32.
    Cabral AA, Fokin VM, Zanotto ED (2004) Nanocrystallization of fresnoite glass. II. Analysis of homogeneous nucleation kinetics. J Non-Cryst Solids 343:85–90CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Otto-Schott-Institut für MaterialforschungJena UniversityJenaGermany

Personalised recommendations