Journal of Materials Science

, Volume 51, Issue 4, pp 1671–1679 | Cite as

Brazing of graphite to Cu with Cu50TiH2 + C composite filler

  • Yangwu Mao
  • Sheng Wang
  • Liangxing Peng
  • Quanrong Deng
  • Pei Zhao
  • Beibei Guo
  • Yizhong Zhang
HTC 2015


Brazing of graphite to Cu has been successfully realized with Cu50TiH2 (containing 50 wt% Cu)-based fillers (including Cu50TiH2 filler and Cu50TiH2 + C composite filler) in vacuum at 1223 K. The average shear strength is 10.8 MPa for the joints brazed with Cu50TiH2 filler. Microstructure observation of the joints shows the crack-free interfaces both at the graphite and the Cu sides. The filler layer mainly consists of Cu base solid solution and Ti–Cu intermetallics. Furthermore, a thin TiC reaction layer is developed close to the graphite substrate. With regard to the joints brazed with Cu50TiH2 + C composite filler, the average shear strength of the joints increases to 18.0 MPa. Microstructural characterization reveals that TiC particles have been synthesized in situ in the filler layer. Cu base solid solution and Ti–Cu intermetallics together with TiC particles are detected in the filler layer. The TiC particles synthesized in situ distribute uniformly in the filler layer, which may act as reinforcements and consequently benefit the improvement of the graphite/Cu joints.


Select Area Electron Diffraction Pattern Residual Thermal Stress Graphite Substrate Thermal Shock Test Filler Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 51304148) and the Scientific Research Project provided by Hubei Provincial Department of Education (Grant No. D20131504).

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Lan FT, Li KZ, Li HJ, He YG, Shen XT, Cao WF (2009) Joining of carbon/carbon composites for nuclear applications. J Mater Sci 44:3747–3750. doi: 10.1007/s10853-009-3501-0 CrossRefGoogle Scholar
  2. 2.
    Asthana R, Singh M, Sobczak N (2010) Wetting behavior and interfacial microstructure of palladium- and silver-based braze alloys with C-C and SiC-SiC composites. J Mater Sci 45:4276–4290. doi: 10.1007/s10853-010-4647-5 CrossRefGoogle Scholar
  3. 3.
    Zhang J, Wang T, Liu C, He Y (2014) Effect of brazing temperature on microstructure and mechanical properties of graphite/copper joints. Mater Sci Eng A 594:26–31CrossRefGoogle Scholar
  4. 4.
    Evans LM, Margetts L, Casalegno V, Leonard F, Lowe T, Lee PD, Schmidt M, Mummery PM (2014) Thermal characterisation of ceramic/metal joining techniques for fusion applications using X-ray tomography. Fusion Eng Des 89:826–836CrossRefGoogle Scholar
  5. 5.
    Zhou ZJ, Zhong ZH, Ge CC (2007) Silicon doped carbon/Cu joints based on amorphous alloy brazing for first wall application. Fusion Eng Des 82:35–40CrossRefGoogle Scholar
  6. 6.
    Sun N, Zhang Y, Lang S, Jiang F, Wang L (2014) Tungsten coatings electro-deposited on CFC substrates from oxide molten salt. J Nucl Mater 455:450–453CrossRefGoogle Scholar
  7. 7.
    Passerone A, Valenza F, Muolo ML (2012) A review of transition metals diborides: from wettability studies to joining. J Mater Sci 47:8275–8289. doi: 10.1007/s10853-012-6621-x CrossRefGoogle Scholar
  8. 8.
    Halbig MC, Asthana R, Singh M (2015) Diffusion bonding of SiC fiber-bonded ceramics using Ti/Mo and Ti/Cu interlayers. Ceram Int 41:2140–2149CrossRefGoogle Scholar
  9. 9.
    Esposito L, Sciti D, Silvestroni L, Melandri C, Guicciardi S, Saito N, Nakashima K, Glaeser Andreas M (2014) Transient liquid phase bonding of HfC-based ceramics. J Mater Sci 49:654–664. doi: 10.1007/s10853-013-7746-2 CrossRefGoogle Scholar
  10. 10.
    Eustathopoulos N, Nicholas MG, Drevet B (1999) Wettability at high temperatures. Pergamon, AmsterdamGoogle Scholar
  11. 11.
    Fedele R, Ciani A, Galantucci L, Casalegno V, Ventrella A, Ferraris M (2014) Characterization of innovative CFC/Cu joints by full-field measurements and finite elements. Mater Sci Eng A 595:306–317CrossRefGoogle Scholar
  12. 12.
    Schedler B, Huber T, Friedrich T, Eidenberger E, Kapp M, Scheu C, Pippan R, Clemens H (2007) Characteristics of an optimized active metal cast joint between copper and C/C. Phys Scr 128:200–203CrossRefGoogle Scholar
  13. 13.
    Shen Y, Li Z, Hao C, Zhang J (2012) Joining C/C composite to copper using active Cu-3.5Si braze. J Nucl Mater 421:28–31CrossRefGoogle Scholar
  14. 14.
    Song J, Guo Q, Tao Z, Gao X, Shen P, Shi J, Liu L (2011) Mo2C intermediate layers for graphite-Cu system using the molten salt method. Fusion Eng Des 86:2965–2970CrossRefGoogle Scholar
  15. 15.
    Robert J, April D, Arthur J (1997) Method for joining carbon-carbon composites to metals. Patent US/1997/5648180Google Scholar
  16. 16.
    Casalegno V, Salvo M, Ferraris M (2012) Surface modification of carbon/carbon composites to improve their wettability by copper. Carbon 50:2296–2306CrossRefGoogle Scholar
  17. 17.
    Xie F, Zhang L, He P, Feng J (2009) Interfacial characteristics of high frequency induction brazed Cu and pre-metalized graphite joints. J Central South Univ Technol 16:902–905CrossRefGoogle Scholar
  18. 18.
    Sobczak N, Sobczak J, Rohatgi P, Ksiazek M, Radziwill W, Morgiel J (1997) Interaction between Ti or Cr containing copper alloys and porous graphite substrate. In: Eustathopoulos N, Sobczak N (eds) Proc. 2nd Int. Conf. on High Temperature Capillarity, Cracow, Poland, pp 145–152Google Scholar
  19. 19.
    Yang L, Shen P, Lin Q, Qiu F, Jiang Q (2010) Wetting of porous graphite by Cu-Ti alloys at 1373 K. Mater Chem Phys 124:499–503CrossRefGoogle Scholar
  20. 20.
    Baumli P, Sytchev J, Kaptay G (2010) Perfect wettability of carbon by liquid aluminum achieved by a multifunctional flux. J Mater Sci 45:5177–5190. doi: 10.1007/s10853-010-4555-8 CrossRefGoogle Scholar
  21. 21.
    Singh M, Asthana R (2008) Characterization of brazed joints of C-C composite to Cu-clad-molybdenum. Compos Sci Technol 68:3010–3019CrossRefGoogle Scholar
  22. 22.
    Trester PW, Valentine PG, Johnson WR, Chin E, Reis EE, Colleraine AP (1996) Tensile fracture characterization of braze joined copper-to-CFC coupon as assemblies. J Nucl Mater 233–237:906–912CrossRefGoogle Scholar
  23. 23.
    Libera S, Visca E (2006) Junction process for a ceramic material and a metallic material with the interposition of a transition material. Patent WO/2006/024971Google Scholar
  24. 24.
    Janczak-Rusch J, Kaptay G, Jeurgens LPH (2014) Interfacial design for joining technologies: an historical perspective. J Mater Eng Perform 23:1608–1613CrossRefGoogle Scholar
  25. 25.
    Ding W, Xu J, Chen Z, Su H, Fu Y (2011) Brazed joints of CBN grains and AISI 1045 steel with AgCuTi-TiC mixed powder as filler materials. Int J Min Met Mater 18:717–724CrossRefGoogle Scholar
  26. 26.
    Blugan G, Kuebler J, Bissig V, Janczak-Rusch J (2007) Brazing of silicon nitride ceramic composite to steel using SiC-particle-reinforced active brazing alloy. Ceram Int 33:1033–1039CrossRefGoogle Scholar
  27. 27.
    Halbig MC, Coddington BP, Asthana R, Singh M (2013) Characterization of silicon carbide joints fabricated using SiC particulate-reinforced Ag-Cu-Ti alloys. Ceram Int 39:4151–4162CrossRefGoogle Scholar
  28. 28.
    Mao Y, Li S, Yan L (2008) Joining of SiC ceramic to graphite using Ni-Cr-SiC powders as filler. Mater Sci Eng A 491:304–308CrossRefGoogle Scholar
  29. 29.
    Mao Y, Yu S, Zhang Y, Guo B, Ma Z, Deng Q (2015) Microstructure analysis of graphite/Cu joints brazed with (Cu-50TiH2) + B composite filler. Fusion Eng Des. doi: 10.1016/j.fusengdes.2015.05.011 Google Scholar
  30. 30.
    Lin G, Huang J, Zhang H, Zhao X (2006) Joints of Cf/SiC composite to Ti-alloy with In-situ synthesized TiCx improved brazing layers. Mater Trans 47:1261–1263CrossRefGoogle Scholar
  31. 31.
    Moutis NV, Jimenez C, Azpiroz X, Speliotis Th, Wilhelmi C, Messoloras S, Mergia K (2010) Brazing of carbon-carbon composites to Nimonic alloys. J Mater Sci 45:74–81. doi: 10.1007/s10853-009-3893-x CrossRefGoogle Scholar
  32. 32.
    Liang YH, Wang HY, Yang YF, Wang YY, Jiang QC (2008) Evolution process of the synthesis of TiC in the Cu–Ti–C system. J Alloys Compd 452:298–303CrossRefGoogle Scholar
  33. 33.
    Van Loo FJJ, Bastin GF (1989) On the diffusion of carbon in titanium carbide. Metall Trans A 20:403–411CrossRefGoogle Scholar
  34. 34.
    Gu YW, Yong MS, Tay BY, Lim CS (2009) Synthesis and bioactivity of porous Ti alloy prepared by foaming with TiH2. Mater Sci Eng C 29:1515–1520CrossRefGoogle Scholar
  35. 35.
    Miriyev A, Sinder M, Frage N (2014) Thermal stability and growth kinetics of the interfacial TiC layer in the Ti alloy/carbon steel system. Acta Mater 75:348–355CrossRefGoogle Scholar
  36. 36.
    Yang ZW, Zhang LX, Ren W, Lei M, Feng JC (2013) Interfacial microstructure and strengthening mechanism of BN-doped metal brazed Ti/SiO2-BN joints. J Eur Ceram Soc 33:759–768CrossRefGoogle Scholar
  37. 37.
    He P, Yang M, Lin T, Jiao Z (2011) Improving the strength of brazed joints with in situ synthesized TiB whiskers. J Alloys Compd 509:289–292CrossRefGoogle Scholar
  38. 38.
    Li XC, Stampfl J, Prinz Fritz B (2000) Mechanical and thermal expansion behavior of laser deposited metal matrix composites of Invar and TiC. Mater Sci Eng A 282:86–90CrossRefGoogle Scholar
  39. 39.
    Singh M, Ohji T, Asthana R, Mathur S (2011) Ceramic integration and joining technologies From Macro to Nanoscale, 1st edn. Wiley, HobokenCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yangwu Mao
    • 1
  • Sheng Wang
    • 1
  • Liangxing Peng
    • 1
  • Quanrong Deng
    • 1
  • Pei Zhao
    • 1
  • Beibei Guo
    • 1
  • Yizhong Zhang
    • 2
  1. 1.Key Laboratory of Plasma Chemistry and Advanced Materials of Hubei ProvinceWuhan Institute of TechnologyWuhanChina
  2. 2.Zhuzhou Cemented Carbide Cutting Tools Co., Ltd.ZhuzhouChina

Personalised recommendations