Skip to main content

Advertisement

Log in

Magnetic nanoparticles: material engineering and emerging applications in lithography and biomedicine

  • 50th Anniversary
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We present an interdisciplinary overview of material engineering and emerging applications of iron oxide nanoparticles. We discuss material engineering of nanoparticles in the broadest sense, emphasizing size and shape control, large-area self-assembly, composite/hybrid structures, and surface engineering. This is followed by a discussion of several nontraditional, emerging applications of iron oxide nanoparticles, including nanoparticle lithography, magnetic particle imaging, magnetic guided drug delivery, and positive contrast agents for magnetic resonance imaging. We conclude with a succinct discussion of the pharmacokinetics pathways of iron oxide nanoparticles in the human body—an important and required practical consideration for any in vivo biomedical application, followed by a brief outlook of the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39

Similar content being viewed by others

Notes

  1. Unless specified, nanoparticle size in this review always refers to diameter

  2. http://www.piercenet.com/browse.cfm?fldID=4A957146-5056-8A76-4E97-81995432210B.

References

  1. Casbeer E, Sharma VK, Li XZ (2012) Synthesis and photocatalytic activity of ferrites under visible light: a review. Sep Purif Technol 87:1–14

    Article  Google Scholar 

  2. Mangrulkar PA, Polshettiwar V, Labhsetwar NK, Varma RS, Rayalu SS (2012) Nano-ferrites for water splitting: unprecedented high photocatalytic hydrogen production under visible light. Nanoscale 4:5202–5209

    Article  Google Scholar 

  3. Han SB, Kang TB, Joo OS, Jung KD (2007) Water splitting for hydrogen production with ferrites. Sol Energy 81:623–628

    Article  Google Scholar 

  4. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D 36:R167–R181

    Article  Google Scholar 

  5. Krishnan KM (2010) Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn 46:2523–2558

    Article  Google Scholar 

  6. Plank C, Vlaskou D, Schillinger U, Mykhaylyk O (2011) MagnetofectionTM platform: from magnetic nanoparticles to novel nucleic acid therapeutics. Ther Deliv 2:717–726

    Article  Google Scholar 

  7. Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17:545–580

    Article  Google Scholar 

  8. Jain RK (1998) The next frontier of molecular medicine: delivery of therapeutics. Nat Med 4:655–657

    Article  Google Scholar 

  9. Ito A, Shinkai M, Honda H, Kobayashi T (2005) Review: medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100:1–11

    Article  Google Scholar 

  10. Liang QL, Macher T, Xu YL, Bao YP, Cassady CJ (2014) MALDI MS in-source decay of glycans using a glutathione-capped iron oxide nanoparticle matrix. Anal Chem 86:8496–8503

    Article  Google Scholar 

  11. Baldi G, Bonacchi D, Innocenti C, Lorenzi G, Sangregorio C (2007) Cobalt ferrite nanoparticles: the control of the particle size and surface state and their effects on magnetic properties. J Magn Magn Mater 311:10–16

    Article  Google Scholar 

  12. Vestal CR, Zhang ZJ (2003) Effects of surface coordination chemistry on the magnetic properties of MnFe2O4 spinel ferrite nanoparticles. J Am Chem Soc 125:9828–9833

    Article  Google Scholar 

  13. Song O, Zhang ZJ (2004) Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J Am Chem Soc 126:6164–6168

    Article  Google Scholar 

  14. Palchoudhury S, Xu Y, Goodwin J, Bao Y (2011) Synthesis of iron oxide nanoworms. J Appl Phys 109:07E314

    Article  Google Scholar 

  15. Palchoudhury S, Xu YL, Rushdi A, Holler RA, Bao YP (2012) Controlled synthesis of iron oxide nanoplates and nanoflowers. Chem Commun 48:10499–10501

    Article  Google Scholar 

  16. Palchoudhury S, An W, Xu YL, Qin Y, Zhang ZT, Chopra N et al (2011) Synthesis and growth mechanism of iron oxide nanowhiskers. Nano Lett 11:1141–1146

    Article  Google Scholar 

  17. Peddis D, Cannas C, Musinu A, Piccaluga G (2009) Magnetism in nanoparticles: beyond the effect of particle size. Chem-A Eur J 15:7822–7829

    Article  Google Scholar 

  18. Peddis D, Cannas C, Musinu A, Ardu A, Orru F, Fiorani D et al (2013) Beyond the effect of particle size: influence of CoFe2O4 nanoparticle arrangements on magnetic properties. Chem Mater 25:2005–2013

    Article  Google Scholar 

  19. Lee J-H, Jang J-T, Choi J-S, Moon SH, Noh S-H, Kim J-W et al (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nano 6:418–422

    Article  Google Scholar 

  20. Mohapatra J, Mitra A, Bahadur D, Aslam M (2013) Surface controlled synthesis of MFe2O4 (M = Mn, Fe Co, Ni and Zn) nanoparticles and their magnetic characteristics. CrystEngComm 15:524–532

    Article  Google Scholar 

  21. Li QL, Wang YF, Chang CB (2010) Study of Cu Co, Mn and La doped NiZn ferrite nanorods synthesized by the coprecipitation method. J Alloy Compd 505:523–526

    Article  Google Scholar 

  22. Xu Y, Sherwood J, Qin Y, Holler RA, Bao Y (2015) A general approach to the synthesis and detailed characterization of magnetic ferrite nanocubes. Nanoscale 7:12641–12649

    Article  Google Scholar 

  23. Scherer C, Neto AMF (2005) Ferrofluids: properties and applications. Braz J Phys 35:718–727

    Article  Google Scholar 

  24. Xie J, Huang J, Li X, Sun S, Chen X (2009) Iron oxide nanoparticle platform for biomedical applications. Curr Med Chem 16:1278–1294

    Article  Google Scholar 

  25. Namdeo M, Saxena S, Tankhiwale R, Bajpai M, Mohan YM, Bajpai SK (2008) Magnetic nanoparticles for drug delivery applications. J Nanosci Nanotechnol 8:3247–3271

    Article  Google Scholar 

  26. Gazeau F, Levy M, Wilhelm C (2008) Optimizing magnetic nanoparticle design for nanothermotherapy. Nanomedicine 3:831–844

    Article  Google Scholar 

  27. Reimer P, Balzer T (2003) Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur Radiol 13:1266–1276

    Google Scholar 

  28. Park M, Lee N, Choi SH, An K, Yu SH, Kim JH et al (2011) Large-scale synthesis of ultrathin manganese oxide nanoplates and their applications to T1 MRI contrast agents. Chem Mater 23:3318–3324

    Article  Google Scholar 

  29. Macher T, Totenhagen J, Sherwood J, Qin Y, Gurler D, Bolding MS et al (2015) Ultrathin iron oxide nanowhiskers as positive contrast agents for magnetic resonance imaging. Adv Funct Mater 25:490–494

    Article  Google Scholar 

  30. Park JH, von Maltzahn G, Zhang LL, Schwartz MP, Ruoslahti E, Bhatia SN et al (2008) Magnetic iron oxide nanoworms for tumor targeting and imaging. Adv Mater 20:1630–1635

    Article  Google Scholar 

  31. Lee N, Choi Y, Lee Y, Park M, Moon WK, Choi SH et al (2012) Water-dispersible ferrimagnetic iron oxide nanocubes with extremely high r2 relaxivity for highly sensitive in vivo MRI of tumors. Nano Lett 12:3127–3131

    Article  Google Scholar 

  32. Guardia P, Di Corato R, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M et al (2012) Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 6:3080–3091

    Article  Google Scholar 

  33. Ferguson RM, Khandhar AP, Kemp SJ, Arami H, Saritas EU, Croft LR et al (2015) Magnetic particle imaging with tailored iron oxide nanoparticle tracers. IEEE Trans Med Imaging 34:1077–1084

    Article  Google Scholar 

  34. Majetich SA, Sachan M (2006) Magnetostatic interactions in magnetic nanoparticle assemblies: energy, time and length scales. J Phys D 39:R407–R422

    Article  Google Scholar 

  35. Majetich SA, Wen T, Mefford OT (2013) Magnetic nanoparticles. MRS Bull 38:899–903

    Article  Google Scholar 

  36. Talapin DV, Murray CB (2005) PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 310:86–89

    Article  Google Scholar 

  37. Kim TH, Cho KS, Lee EK, Lee SJ, Chae J, Kim JW et al (2011) Full-colour quantum dot displays fabricated by transfer printing. Nat Photonics 5:176–182

    Article  Google Scholar 

  38. Han ST, Zhou Y, Xu ZX, Huang LB, Yang XB, Roy VAL (2012) Microcontact printing of ultrahigh density gold nanoparticle monolayer for flexible flash memories. Adv Mater 24:3556–3561

    Article  Google Scholar 

  39. Nie ZH, Petukhova A, Kumacheva E (2010) Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat Nanotechnol 5:15–25

    Article  Google Scholar 

  40. Zhang W, Wen TL, Krishnan KM (2012) Positive exchange bias and upward magnetic relaxation in a Fe-film/CoO-nanoparticle hybrid system. Appl Phys Lett 101:132401 (6 pp)

    Article  Google Scholar 

  41. Majetich SA, Wen T, Booth RA (2011) Functional magnetic nanoparticle assemblies: formation, collective behavior, and future directions. ACS Nano 5:6081–6084

    Article  Google Scholar 

  42. Bao YP, Beerman M, Krishnan KM (2004) Controlled self-assembly of colloidal cobalt nanocrystals mediated by magnetic interactions. J Magn Magn Mater 272:E1367–E1368

    Article  Google Scholar 

  43. Grzelczak M, Vermant J, Furst EM, Liz-Marzan LM (2010) Directed self-assembly of nanoparticles. ACS Nano 4:3591–3605

    Article  Google Scholar 

  44. Bigioni TP, Lin XM, Nguyen TT, Corwin EI, Witten TA, Jaeger HM (2006) Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nat Mater 5:265–270

    Article  Google Scholar 

  45. Huang JX, Kim F, Tao AR, Connor S, Yang PD (2005) Spontaneous formation of nanoparticle stripe patterns through dewetting. Nat Mater 4:896–900

    Article  Google Scholar 

  46. Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421

    Article  Google Scholar 

  47. Talapin DV, Shevchenko EV, Murray CB, Titov AV, Kral P (2007) Dipole-dipole interactions in nanoparticle superlattices. Nano Lett 7:1213–1219

    Article  Google Scholar 

  48. Liddle JA, Cui Y, Alivisatos P (2004) Lithographically directed self-assembly of nanostructures. J Vac Sci Technol B 22:3409–3414

    Article  Google Scholar 

  49. Lin XM, Jaeger HM, Sorensen CM, Klabunde KJ (2001) Formation of long-range-ordered nanocrystal superlattices on silicon nitride substrates. J Phys Chem B 105:3353–3357

    Article  Google Scholar 

  50. Yin YD, Lu Y, Gates B, Xia YN (2001) Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures. J Am Chem Soc 123:8718–8729

    Article  Google Scholar 

  51. Bishop KJM, Wilmer CE, Soh S, Grzybowski BA (2009) Nanoscale forces and their uses in self-assembly. Small 5:1600–1630

    Article  Google Scholar 

  52. Cheng GJ, Romero D, Fraser GT, Walker ARH (2005) Magnetic-field-induced assemblies of cobalt nanoparticles. Langmuir 21:12055–12059

    Article  Google Scholar 

  53. Shevchenko EV, Talapin DV, Kotov NA, O’Brien S, Murray CB (2006) Structural diversity in binary nanoparticle superlattices. Nature 439:55–59

    Article  Google Scholar 

  54. Gao YH, Bao YP, Beerman M, Yasuhara A, Shindo D, Krishnan KM (2004) Superstructures of self-assembled cobalt nanocrystals. Appl Phys Lett 84:3361–3363

    Article  Google Scholar 

  55. Wen TL, Majetich SA (2011) Ultra-large-area self-assembled mono layers of nanoparticles. ACS Nano 5:8868–8876

    Article  Google Scholar 

  56. Wen T, Zhang D, Wen Q, Zhang H, Liao Y, Li Q et al (2015) Magnetic nanoparticle assembly arrays prepared by hierarchical self-assembly on a patterned surface. Nanoscale 7:4906–4911

    Article  Google Scholar 

  57. Wen TL, Brush LN, Krishnan KM (2014) A generalized diffusion model for growth of nanoparticles synthesized by colloidal methods. J Colloid Interface Sci 419:79–85

    Article  Google Scholar 

  58. Puntes VF, Krishnan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291:2115–2117

    Article  Google Scholar 

  59. Bao YP, An W, Turner CH, Krishnan KM (2010) The critical role of surfactants in the growth of cobalt nanoparticles. Langmuir 26:478–483

    Article  Google Scholar 

  60. Lee D-E, Koo H, Sun I-C, Ryu JH, Kim K, Kwon IC (2012) Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev 41:2656–2672

    Article  Google Scholar 

  61. Jin YD, Jia CX, Huang SW, O’Donnell M, Gao XH (2010) Multifunctional nanoparticles as coupled contrast agents. Nat Commun 1:1–8

    Article  Google Scholar 

  62. Bao YP, Calderon H, Krishnan KM (2007) Synthesis and characterization of magnetic-optical Co-Au core-shell nanoparticles. J Phys Chem C 111:1941–1944

    Article  Google Scholar 

  63. Corr SA, Rakovich YP, Gun’ko YK (2008) Multifunctional magnetic-fluorescent nanocomposites for biomedical applications. Nanoscale Res Lett 3:87–104

    Article  Google Scholar 

  64. Xu YL, Palchoudhury S, Qin Y, Macher T, Bao YP (2012) Make conjugation simple: a facile approach to integrated nanostructures. Langmuir 28:8767–8772

    Article  Google Scholar 

  65. Arami H, Khandhar AP, Tomitaka A, Yu E, Goodwill PW, Conolly SM et al (2015) In vivo multimodal magnetic particle imaging (MPI) with tailored magneto/optical contrast agents. Biomaterials 52:251–261

    Article  Google Scholar 

  66. Arami H, Krishnan KM (2014) Intracellular performance of tailored nanoparticle tracers in magnetic particle imaging. J Appl Phys 115:17B306 (3 pp)

    Article  Google Scholar 

  67. Gonzales-Weimuller M, Zeisberger M, Krishnan KM (2009) Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. J Magn Magn Mater 321:1947–1950

    Article  Google Scholar 

  68. Gonzales M, Krishnan KM (2005) Synthesis of magnetoliposomes with monodisperse iron oxide nanocrystal cores for hyperthermia. J Magn Magn Mater 293:265–270

    Article  Google Scholar 

  69. Clift MJD, Rothen-Rutishauser B, Brown DM, Duffin R, Donaldson K, Proudfoot L et al (2008) The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line. Toxicol Appl Pharmacol 232:418–427

    Article  Google Scholar 

  70. Chouly C, Pouliquen D, Lucet I, Jeune JJ, Jallet P (1996) Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J Microencapsul 13:245–255

    Article  Google Scholar 

  71. Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318

    Google Scholar 

  72. Lunov O, Syrovets T, Rocker C, Tron K, Nienhaus GU, Rasche V et al (2010) Lysosomal degradation of the carboxydextran shell of coated superparamagnetic iron oxide nanoparticles and the fate of professional phagocytes. Biomaterials 31:9015–9022

    Article  Google Scholar 

  73. Ferguson RM, Khandhar AP, Arami H, Hua L, Hovorka O, Krishnan KM (2013) Tailoring the magnetic and pharmacokinetic properties of iron oxide magnetic particle imaging tracers. Biomed Eng 58:493–507

    Article  Google Scholar 

  74. Kittel C (1949) Physical theory of ferromagnetic domains. Rev Modern Phys 21:541–589

    Article  Google Scholar 

  75. Krishnan KM, Pakhomov AB, Bao Y, Blomqvist P, Chun Y, Gonzales M et al (2006) Nanomagnetism and spin electronics: materials, microstructure and novel properties. J Mater Sci 41:793–815. doi:10.1007/s10853-006-6564-1

    Article  Google Scholar 

  76. Frei SSEH, Treves D (1957) Critical size and nucleation field of ideal ferromagnetic particles. Phys Rev 106:446–455

    Article  Google Scholar 

  77. Puntes VF, Krishnan K, Alivisatos AP (2002) Synthesis of colloidal cobalt nanoparticles with controlled size and shapes. Top Catal 19:145–148

    Article  Google Scholar 

  78. Bao YP, Beerman M, Pakhomov AB, Krishnan KM (2005) Controlled crystalline structure and surface stability of cobalt nanocrystals. J Phys Chem B 109:7220–7222

    Article  Google Scholar 

  79. Bao Y, An W, Turner CH, Krishnan K (2009) The critical role of surfactants in the growth of cobalt nanoparticles. Langmuir 26:478–483

    Article  Google Scholar 

  80. Carpenter EE (2001) Iron nanoparticles as potential magnetic carriers. J Magn Magn Mater 225:17–20

    Article  Google Scholar 

  81. Guo DD, Wu CH, Li XM, Jiang H, Wang XM, Chen BA (2008) In vitro cellular uptake and cytotoxic effect of functionalized nickel nanoparticles on leukemia cancer cells. J Nanosci Nanotechnol 8:2301–2307

    Article  Google Scholar 

  82. Bao Y, Pakhomov AB, Krishnan KM (2005) A general approach to synthesis of nanoparticles with controlled morphologies and magnetic properties. J Appl Phys 97:10J317 (3 pp)

    Article  Google Scholar 

  83. Sun SH, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992

    Article  Google Scholar 

  84. Joseyphus RJ, Shinoda K, Sato Y, Tohji K, Jeyadevan B (2008) Composition controlled synthesis of fcc-FePt nanoparticles using a modified polyol process. J Mater Sci 43:2402–2406. doi:10.1007/s10853-007-1951-9

    Article  Google Scholar 

  85. Wang HL, Zhang Y, Huang Y, Zeng Q, Hadjipanayis GC (2004) CoPt nanoparticles by chemical reduction. J Magn Magn Mater 272:E1279–E1280

    Article  Google Scholar 

  86. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  Google Scholar 

  87. Hyeon T, Lee SS, Park J, Chung Y, Na HB (2001) Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 123:12798–12801

    Article  Google Scholar 

  88. Rockenberger J, Scher EC, Alivisatos AP (1999) A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. J Am Chem Soc 121:11595–11596

    Article  Google Scholar 

  89. Xie J, Peng S, Brower N, Pourmand N, Wang SX, Sun SH (2006) One-pot synthesis of monodisperse iron oxide nanoparticles for potential biomedical applications. Pure Appl Chem 78:1003–1014

    Article  Google Scholar 

  90. Park J, An KJ, Hwang YS, Park JG, Noh HJ, Kim JY et al (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895

    Article  Google Scholar 

  91. Yu WW, Falkner JC, Yavuz CT, Colvin VL (2004) Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts. Chem Commun 2306–2307

  92. Xu YL, Qin Y, Palchoudhury S, Bao YP (2011) Water-soluble iron oxide nanoparticles with high stability and selective surface functionality. Langmuir 27:8990–8997

    Article  Google Scholar 

  93. Xu YL, Baiu DC, Sherwood JA, McElreath MR, Qin Y, Lackey KH et al (2014) Linker-free conjugation and specific cell targeting of antibody functionalized iron-oxide nanoparticles. J Mater Chem B 2:6198–6206

    Article  Google Scholar 

  94. Kim BH, Lee N, Kim H, An K, Park YI, Choi Y et al (2011) Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T-1 magnetic resonance imaging contrast agents. J Am Chem Soc 133:12624–12631

    Article  Google Scholar 

  95. Palchoudhury S, Xu YL, An W, Turner CH, Bao YP (2010) Platinum attachments on iron oxide nanoparticle surfaces. J Appl Phys 107:09B311 (3 pp)

    Article  Google Scholar 

  96. Young AG, Al-Salim N, Green DP, McQuillan AJ (2008) Attenuated total reflection infrared studies of oleate and trioctylphosphine oxide ligand adsorption and exchange reactions on CdS quantum dot films. Langmuir 24:3841–3849

    Article  Google Scholar 

  97. Hufschmid R, Arami H, Ferguson RM, Gonzales M, Teeman E, Brush LN, Browning ND, Krishnan KM (2015) Nanoscale 7:11142–11154

    Article  Google Scholar 

  98. Hai HT, Yang HT, Kura H, Hasegawa D, Ogata Y, Takahashi M et al (2010) Size control and characterization of wustite (core)/spinel (shell) nanocubes obtained by decomposition of iron oleate complex. J Colloid Interface Sci 346:37–42

    Article  Google Scholar 

  99. Kovalenko MV, Bodnarchuk MI, Lechner RT, Hesser G, Schaffler F, Heiss W (2007) Fatty acid salts as stabilizers in size- and shape-controlled nanocrystal synthesis: the case of inverse spinel iron oxide. J Am Chem Soc 129:6352–6353

    Article  Google Scholar 

  100. Xu ZC, Shen CM, Tian YA, Shi XZ, Gao HJ (2010) Organic phase synthesis of monodisperse iron oxide nanocrystals using iron chloride as precursor. Nanoscale 2:1027–1032

    Article  Google Scholar 

  101. Kim D, Park J, An K, Yang NK, Park JG, Hyeon T (2007) Synthesis of hollow iron nanoframes. J Am Chem Soc 129:5812–5813

    Article  Google Scholar 

  102. Shavel A, Rodriguez-Gonzalez B, Spasova M, Farle M, Liz-Marzan LM (2007) Synthesis and characterization of iron/iron oxide core/shell nanocubes. Adv Funct Mater 17:3870–3876

    Article  Google Scholar 

  103. Kwon SG, Piao Y, Park J, Angappane S, Jo Y, Hwang NM et al (2007) Kinetics of monodisperse iron oxide nanocrystal formation by “heating-up” process. J Am Chem Soc 129:12571–12584

    Article  Google Scholar 

  104. Plate NA, Mamlykh AV, Uzhinova LD, Panov VP, Rozenfel’d MA (1989) Structure of the heparin macromonomer and features of its radical polymerization. Polym Sci USSR 31:220–226

    Article  Google Scholar 

  105. Kwon KW, Lee BH, Shim M (2006) Structural evolution in metal oxide/semiconductor colloidal nanocrystal heterostructures. Chem Mater 18:6357–6363

    Article  Google Scholar 

  106. Park JN, Zhang P, Hu YS, McFarland E (2010) Synthesis and characterization of sintering-resistant silica-encapsulated Fe3O4 magnetic nanoparticles active for oxidation and chemical looping combustion. Nanotechnology 21:225708 (8 pp)

    Article  Google Scholar 

  107. Jia CJ, Sun LD, Luo F, Han XD, Heyderman LJ, Yan ZG et al (2008) Large-scale synthesis of single-crystalline iron oxide magnetic nanorings. J Am Chem Soc 130:16968–16977

    Article  Google Scholar 

  108. Issa B, Obaidat IM, Albiss BA, Haik Y (2013) Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci 14:21266–21305

    Article  Google Scholar 

  109. Kachkachi H, Ezzir A, Nogues M, Tronc E (2000) Surface effects in nanoparticles: application to maghemite gamma-Fe2O3. Eur Phys J B 14:681–689

    Article  Google Scholar 

  110. Koseoglu Y, Kavas H, Aktas B (2006) Surface effects on magnetic properties of superparamagnetic magnetite nanoparticles. Phys Status Solidi 203:1595–1601

    Article  Google Scholar 

  111. Millan A, Urtizberea A, Silva NJO, Palacio F, Amaral VS, Snoeck E et al (2007) Surface effects in maghemite nanoparticles. J Magn Magn Mater 312:L5–L9

    Article  Google Scholar 

  112. Koseoglu Y, Kavas H (2008) Size and surface effects on magnetic properties of Fe3O4 nanoparticles. J Nanosci Nanotechnol 8:584–590

    Article  Google Scholar 

  113. Iglesias O, Labarta A (2001) Finite-size and surface effects in maghemite nanoparticles: Monte Carlo simulations. Phys Rev B 63:184416 (19 pp)

    Article  Google Scholar 

  114. Ding T, Song K, Clays K, Tung CH (2009) Fabrication of 3D photonic crystals of ellipsoids: convective self-assembly in magnetic field. Adv Mater 21:1936–1940

    Article  Google Scholar 

  115. Yamaki M, Higo J, Nagayama K (1995) Size-dependent separation of colloidal particles in 2-dimensional convective self-assembly. Langmuir 11:2975–2978

    Article  Google Scholar 

  116. Kim MH, Im SH, Park OO (2005) Rapid fabrication of two- and three-dimensional colloidal crystal films via confined convective assembly. Adv Funct Mater 15:1329–1335

    Article  Google Scholar 

  117. Wen TL, Liang WK, Krishnan KM (2010) Coupling of blocking and melting in cobalt ferrofluids. J Appl Phys 107:09B501 (3 pp)

    Google Scholar 

  118. Denkov ND, Velev OD, Kralchevsky PA, Ivanov IB, Yoshimura H, Nagayama K (1992) Mechanism of formation of 2 dimensional crystals from latex-particles on substrate. Langmuir 8:3183–3190

    Article  Google Scholar 

  119. Henzie J, Andrews SC, Ling XY, Li ZY, Yang PD (2013) Oriented assembly of polyhedral plasmonic nanoparticle clusters. Proc Natl Acad Sci USA 110:6640–6645

    Article  Google Scholar 

  120. Zhang JH, Li YF, Zhang XM, Yang B (2010) Colloidal self-assembly meets nanofabrication: from two-dimensional colloidal crystals to nanostructure arrays. Adv Mater 22:4249–4269

    Article  Google Scholar 

  121. Lalatonne Y, Richardi J, Pileni MP (2004) Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals. Nat Mater 3:121–125

    Article  Google Scholar 

  122. Glotzer SC (2012) Nanotechnology shape matters. Nature 481:450–452

    Article  Google Scholar 

  123. Jones MR, Macfarlane RJ, Prigodich AE, Patel PC, Mirkin CA (2011) Nanoparticle shape anisotropy dictates the collective behavior of surface-bound ligands. J Am Chem Soc 133:18865–18869

    Article  Google Scholar 

  124. Wu LH, Jubert PO, Berman D, Imaino W, Nelson A, Zhu HY et al (2014) Monolayer assembly of ferrimagnetic Co x Fe3−x O4 nanocubes for magnetic recording. Nano Lett 14:3395–3399

    Article  Google Scholar 

  125. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nature 389:827–829

    Article  Google Scholar 

  126. Yunker PJ, Still T, Lohr MA, Yodh AG (2011) Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 476:308–311

    Article  Google Scholar 

  127. Damasceno PF, Engel M, Glotzer SC (2012) Predictive self-assembly of polyhedra into complex structures. Science 337:453–457

    Article  Google Scholar 

  128. Mueggenburg KE, Lin XM, Goldsmith RH, Jaeger HM (2007) Elastic membranes of close-packed nanoparticle arrays. Nat Mater 6:656–660

    Article  Google Scholar 

  129. He JB, Kanjanaboos P, Frazer NL, Weis A, Lin XM, Jaeger HM (2010) Fabrication and mechanical properties of large-scale freestanding nanoparticle membranes. Small 6:1449–1456

    Article  Google Scholar 

  130. Kanjanaboos P, Joshi-Imre A, Lin XM, Jaeger HM (2011) Strain patterning and direct measurement of Poisson’s ratio in nanoparticle mono layer sheets. Nano Lett 11:2567–2571

    Article  Google Scholar 

  131. Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Ann Rev Mater Sci 30:545–610

    Article  Google Scholar 

  132. Singh A, Dickinson C, Ryan KM (2012) Insight into the 3D architecture and quasicrystal symmetry of multilayer nanorod assemblies from moire interference patterns. ACS Nano 6:3339–3345

    Article  Google Scholar 

  133. Puntes VF, Gorostiza P, Aruguete DM, Bastus NG, Alivisatos AP (2004) Collective behaviour in two-dimensional cobalt nanoparticle assemblies observed by magnetic force microscopy. Nat Mater 3:263–268

    Article  Google Scholar 

  134. Yamamoto K, Hogg CR, Yamamuro S, Hirayama T, Majetich SA (2011) Dipolar ferromagnetic phase transition in Fe3O4 nanoparticle arrays observed by Lorentz microscopy and electron holography. Appl Phys Lett 98:072509 (3 pp)

    Article  Google Scholar 

  135. Wen TL, Booth RA, Majetich SA (2012) Ten-nanometer dense hole arrays generated by nanoparticle lithography. Nano Lett 12:5873–5878

    Article  Google Scholar 

  136. Claridge SA, Castleman AW, Khanna SN, Murray CB, Sen A, Weiss PS (2009) Cluster-assembled materials. ACS Nano 3:244–255

    Article  Google Scholar 

  137. Lopes WA, Jaeger HM (2001) Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds. Nature 414:735–738

    Article  Google Scholar 

  138. Alba M, Pazos-Perez N, Vaz B, Formentin P, Tebbe M, Correa-Duarte MA et al (2013) Macroscale plasmonic substrates for highly sensitive surface-enhanced raman scattering. Angew Chem Int Ed 52:6459–6463

    Article  Google Scholar 

  139. Wen TL, Krishnan KM (2011) Cobalt-based magnetic nanocomposites: fabrication, fundamentals and applications. J Phys D 44:393001 (24 pp)

    Article  Google Scholar 

  140. Wen TL, Krishnan KM (2011) Magnetic properties of Au-core-Co-shell nanoparticles. J Appl Phys 109:07B515 (3 pp)

    Google Scholar 

  141. Wen TL, Krishnan KM (2010) Thermal stability and morphological transformations of Au-core-Co-shell nanocrucibles. J Phys Chem C 114:14838–14842

    Article  Google Scholar 

  142. Wen TL, Liu D, Luscombe CK, Krishnan KM (2009) Granular magnetoresistance in cobalt/poly (3-hexylthiophene, 2, 5-diyl) hybrid thin films prepared by a wet chemical method. Appl Phys Lett 95:082509 (3 pp)

    Article  Google Scholar 

  143. Situ SF, Samia ACS (2014) Highly efficient antibacterial iron oxide@carbon nanochains from wustite precursor nanoparticles. ACS Appl Mater Interface 6:20154–20163

    Article  Google Scholar 

  144. Lu F, Popa A, Zhou SW, Zhu JJ, Samia ACS (2013) Iron oxide-loaded hollow mesoporous silica nanocapsules for controlled drug release and hyperthermia. Chem Commun 49:11436–11438

    Article  Google Scholar 

  145. Filipcsei G, Csetneki I, Szilagyi A, Zrinyi M (2007) Magnetic field-responsive smart polymer composites. In: Abe A, Albertsson A-C, Coates GW, Genzer J, Kobayashi S, Lee K-S, Leibler L, Long TE, Möller M, Okay O, Percec V, Tang BZ, Terentjev EM, Vicent MJ, Voit B, Wiesner U, Zhang X (eds) Advances in polymer science, vol 206. Springer, Berlin, pp 137–189

    Google Scholar 

  146. Kumar UN, Kratz K, Wagermaier W, Behl M, Lendlein A (2010) Non-contact actuation of triple-shape effect in multiphase polymer network nanocomposites in alternating magnetic field. J Mater Chem 20:3404–3415

    Article  Google Scholar 

  147. Stepanov GV, Borin DY, Raikher YL, Melenev PV, Perov NS (2008) Motion of ferroparticles inside the polymeric matrix in magnetoactive elastomers. J Phys 20:204121 (6 pp)

    Google Scholar 

  148. Thévenot J, Oliveira H, Sandre O, Lecommandoux S (2013) Magnetic responsive polymer composite materials. Chem Soc Rev 42:7099–7116

    Article  Google Scholar 

  149. Ding XB, Sun ZH, Wan GX, Jiang YY (1998) Preparation of thermosensitive magnetic particles by dispersion polymerization. React Funct Polym 38:11–15

    Article  Google Scholar 

  150. Zrínyi M, Barsi L, Büki A (1996) Deformation of ferrogels induced by nonuniform magnetic fields. J Chem Phys 104:8750–8756

    Article  Google Scholar 

  151. Visakh PM, Thomas S, Chandra AK, Mathew AP (2013) Advances in elastomers II: composites and nanocomposites. Springer, Berlin

    Google Scholar 

  152. Kost J, Langer R (2012) Responsive polymeric delivery systems. Adv Drug Deliv Rev 64:327–341

    Article  Google Scholar 

  153. Luo L-B, Yu S-H, Qian H-S, Gong J-Y (2006) Large scale synthesis of uniform silver@carbon rich composite (carbon and cross-linked PVA) sub-microcables by a facile green chemistry carbonization approach. Chem Commun 793–795

  154. Jones CD, Lyon LA (2000) Synthesis and characterization of multiresponsive core–shell microgels. Macromolecules 33:8301–8306

    Article  Google Scholar 

  155. Zhou S, Chu B (1998) Synthesis and volume phase transition of poly(methacrylic acid- co-N-isopropylacrylamide) microgel particles in water. J Phys Chem B 102:1364–1371

    Article  Google Scholar 

  156. Galeotti F, Bertini F, Scavia G, Bolognesi A (2011) A controlled approach to iron oxide nanoparticles functionalization for magnetic polymer brushes. J Colloid Interface Sci 360:540–547

    Article  Google Scholar 

  157. Li X, Liu Y, Xu Z, Yan H (2011) Preparation of magnetic microspheres with thiol-containing polymer brushes and immobilization of gold nanoparticles in the brush layer. Eur Polym J 47:1877–1884

    Article  Google Scholar 

  158. Liu B, Zhang D, Wang J, Chen C, Yang X, Li C (2013) Multilayer magnetic composite particles with functional polymer brushes as stabilizers for gold nanocolloids and their recyclable catalysis. J Phys Chem C 117:6363–6372

    Article  Google Scholar 

  159. Xu F, Geiger JH, Baker GL, Bruening ML (2011) Polymer brush-modified magnetic nanoparticles for His-tagged protein purification. Langmuir 27:3106–3112

    Article  Google Scholar 

  160. Ranjan R, Brittain WJ (2007) Combination of living radical [polymerization and click chemistry for surface modification. Macromolecules 40:6217–6223

    Article  Google Scholar 

  161. Schmidt AM (2005) The synthesis of magnetic core-shell nanoparticles by surface-initiated ring-opening polymerization of e-caprolactone. Macromol Rapid Commun 26:93–97

    Article  Google Scholar 

  162. Moraes J, Ohno K, Maschmeyer T, Perrier S (2013) Synthesis of silica-polymer core-shell nanoparticles by reversible addition-fragmentation chain transfer polymerization. Chem Commun 49:9077–9088

    Article  Google Scholar 

  163. Vestal CR, Zhang ZJ (2002) Atom transfer radical polymerization synthesis and magnetic characterization of MnFe2O4/polystyrene core/shell nanoparticles. J Am Chem Soc 124:14312–14313

    Article  Google Scholar 

  164. Wang Y, Teng X, Wang J-S, Yang H (2003) Solvent-free atom transfer radical polymerization in the synthesis of Fe2O3 @polystyrene core–shell nanoparticles. Nano Lett 3:789–793

    Article  Google Scholar 

  165. Achilleos DS, Vamvakaki M (2010) End-grafted polymer chains onto inorganic nano-objects. Materials 3:1981–2026

    Article  Google Scholar 

  166. Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS et al (2006) Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett 6:2427–2430

    Article  Google Scholar 

  167. Kloust H, Pöselt E, Kappen S, Schmidtke C, Kornowski A, Pauer W et al (2012) Ultrasmall biocompatible nanocomposites: a new approach using seeded emulsion polymerization for the encapsulation of nanocrystals. Langmuir 28:7276–7281

    Article  Google Scholar 

  168. Chern CS (2006) Emulsion polymerization mechanisms and kinetics. Prog Polym Sci 31:443–486

    Article  Google Scholar 

  169. Keng PY, Bull MM, Shim I-B, Nebesny KG, Armstrong NR, Sung Y et al (2011) Colloidal polymerization of polymer-coated ferromagnetic cobalt nanoparticles into Pt-Co3O4 nanowires. Chem Mater 23:1120–1129

    Article  Google Scholar 

  170. Cuppoletti J (2011) Metal, ceramic and polymeric composites for various uses. InTech, chap 25

  171. Tanahashi M (2010) Development of fabrication methods of filler/polymer nanocomposites: with focus on simple melt-compounding-based approach without surface modification of nanofillers. Materials 3:1593–1619

    Article  Google Scholar 

  172. Yang T-I, Brown RNC, Kempel LC, Kofinas P (2008) Magneto-dielectric properties of polymer—Fe3O4 nanocomposites. J Magn Magn Mater 320:2714–2720

    Article  Google Scholar 

  173. Wang D, Wang K, Xu W (2013) Novel fabrication of magnetic thermoplastic nanofibers via melt extrusion of immiscible blends. Polym Adv Technol 24:70–74

    Article  Google Scholar 

  174. Bin Y, Yamanaka A, Chen QY, Xi Y, Jiang XW, Matsuo M (2007) Morphological, electrical and mechanical properties of ultrahigh molecular weight polyethylene and multi-wall carbon nanotube composites prepared in decalin and paraffin. Polym J 39:598–609

    Article  Google Scholar 

  175. Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Friedrich K (2001) Improvement of tensile properties of nano-SiO2/PP composites in relation to percolation mechanism. Polymer 42:3301–3304

    Article  Google Scholar 

  176. Pan G, Guo Q, Tian A, He Z (2008) Mechanical behaviors of Al2O3 nanoparticles reinforced polyetheretherketone. Mater Sci Eng A 492:383–391

    Article  Google Scholar 

  177. Pablico-Lansigan MH, Situ SF, Samia ACS (2013) Magnetic particle imaging: advancements and perspectives for real-time in vivo monitoring and image-guided therapy. Nanoscale 5:4040–4055

    Article  Google Scholar 

  178. Hermanson GT (2008) Bioconjugate techniques, 2nd edn. Academic Press, San Diego

    Google Scholar 

  179. Lee H, Rho J, Messersmith PB (2009) Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Adv Mater 21:431–432

    Article  Google Scholar 

  180. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430

    Article  Google Scholar 

  181. Stuart BH (2004) Infrared spectroscopy [electronic resource]: fundamentals and applications. Wiley, Hoboken

    Book  Google Scholar 

  182. Wang XY, Jin BK, Lin XQ (2002) In-situ FTIR spectroelectrochemical study of dopamine at a glassy carbon electrode in a neutral solution. Anal Sci 18:931–933

    Article  Google Scholar 

  183. Modak S, Cheung NK (2007) Disialoganglioside directed immunotherapy of neuroblastoma. Cancer Investig 25:67–77

    Article  Google Scholar 

  184. Yoshida S, Fukumoto S, Kawaguchi H, Sato S, Ueda R, Furukawa K (2001) Ganglioside G(D2) in small cell lung cancer cell lines: enhancement of cell proliferation and mediation of apoptosis. Cancer Res 61:4244–4252

    Google Scholar 

  185. Jiao P, Zhou H, Otto M, Mu Q, Li L, Su G et al (2011) Leading neuroblastoma cells to die by multiple premeditated attacks from a multifunctionalized nanoconstruct. J Am Chem Soc 133:13918–13921

    Article  Google Scholar 

  186. Ross CA, Smith HI, Savas T, Schattenburg M, Farhoud M, Hwang M et al (1999) Fabrication of patterned media for high density magnetic storage. J Vac Sci Technol B 17:3168–3176

    Article  Google Scholar 

  187. Albrecht TR, Bedau D, Dobisz E, Gao H, Grobis M, Hellwig O et al (2013) Bit patterned media at 1 Tdot/in(2) and beyond. IEEE Trans Magn 49:773–778

    Article  Google Scholar 

  188. Kikitsu A, Maeda T, Hieda H, Yamamoto R, Kihara N, Kamata Y (2013) 5 Tdots/in(2) bit patterned media fabricated by a directed self-assembly mask. IEEE Trans Magn 49:693–698

    Article  Google Scholar 

  189. Terris BD, Thomson T (2005) Nanofabricated and self-assembled magnetic structures as data storage media. J Phys D 38:R199–R222

    Article  Google Scholar 

  190. Broers AN, Hoole ACF, Ryan JM (1996) Electron beam lithography—resolution limits. Microelectron Eng 32:131–142

    Article  Google Scholar 

  191. Vieu C, Carcenac F, Pepin A, Chen Y, Mejias M, Lebib A et al (2000) Electron beam lithography: resolution limits and applications. Appl Surf Sci 164:111–117

    Article  Google Scholar 

  192. Tseng AA, Chen K, Chen CD, Ma KJ (2003) Electron beam lithography in nanoscale fabrication: recent development. IEEE Trans Electron Packag Manuf 26:141–149

    Article  Google Scholar 

  193. Park M, Harrison C, Chaikin PM, Register RA, Adamson DH (1997) Block copolymer lithography: periodic arrays of similar to 10(11) holes in 1 square centimeter. Science 276:1401–1404

    Article  Google Scholar 

  194. Ruiz R, Kang HM, Detcheverry FA, Dobisz E, Kercher DS, Albrecht TR et al (2008) Density multiplication and improved lithography by directed block copolymer assembly. Science 321:936–939

    Article  Google Scholar 

  195. Fasolka MJ, Mayes AM (2001) Block copolymer thin films: physics and applications. Ann Rev Mater Res 31:323–355

    Article  Google Scholar 

  196. Stoykovich MP, Nealey PF (2006) Block copolymers and conventional lithography. Mater Today 9:20–29

    Article  Google Scholar 

  197. Hogg CR, Majetich SA, Bain JA (2010) Investigating pattern transfer in the small-gap regime using electron-beam stabilized nanoparticle array etch masks. IEEE Trans Magn 46:2307–2310

    Article  Google Scholar 

  198. Keil D, Anderson E (2001) Characterization of reactive ion etch lag scaling. J Vac Sci Technol B 19:2082–2088

    Article  Google Scholar 

  199. Seshadri K, Froyd K, Parikh AN, Allara DL, Lercel MJ, Craighead HG (1996) Electron-beam-induced damage in self-assembled monolayers. J Phys Chem 100:15900–15909

    Article  Google Scholar 

  200. Lercel MJ, Rooks M, Tiberio RC, Craighead HG, Sheen CW, Parikh AN et al (1995) Pattern transfer of electron-beam modified self-assembled monolayers for high-resolution lithography. J Vac Sci Technol B 13:1139–1143

    Article  Google Scholar 

  201. Balachova OV, Alves MAR, Swart JW, Braga ES, Cescato L (2000) CF4 plasma etching of materials used in microelectronics manufacturing. Microelectron J 31:213–215

    Article  Google Scholar 

  202. Cao G, Wang Y (2011) Nanostructures & nanomaterials : synthesis, properties, and applications, 2nd edn. World Scientific, New Jersey

    Book  Google Scholar 

  203. Su KH, Wei QH, Zhang X, Mock JJ, Smith DR, Schultz S (2003) Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett 3:1087–1090

    Article  Google Scholar 

  204. Gleich B, Weizenecker J (2005) Tomographic imaging using the nonlinear response of magnetic particles. Nature 435:1214–1217

    Article  Google Scholar 

  205. Weizenecker J, Gleich B, Rahmer J, Dahnke H, Borgert J (2009) Three-dimensional real-time in vivo magnetic particle imaging. Phys Med Biol 54:L1–L10

    Article  Google Scholar 

  206. Sattel TF, Knopp T, Biederer S, Gleich B, Weizenecker J, Borgert J et al (2009) Single-sided device for magnetic particle imaging. J Phys D 42:022001–022005

    Article  Google Scholar 

  207. Weizenecker J, Borgert J, Gleich B (2007) A simulation study on the resolution and sensitivity of magnetic particle imaging. Phys Med Biol 52:6363–6374

    Article  Google Scholar 

  208. Goodwill PW, Scott GC, Stang PP, Conolly SM (2009) Narrowband magnetic particle imaging. IEEE Trans Med Imaging 28:231–1237

    Article  Google Scholar 

  209. Goodwill PW, Conolly SM (2010) The X-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation. IEEE Trans Med Imaging 29:851–1859

    Article  Google Scholar 

  210. Ferguson RM, Minard KR, Khandhar AP, Krishnan KM (2011) Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging. Med Phys 38:1619–1626

    Article  Google Scholar 

  211. Ferguson RM, Minard KR, Krishnan KM (2009) Optimization of nanoparticle core size for magnetic particle imaging. J Magn Magn Mater 321:1548–1551

    Article  Google Scholar 

  212. Ferguson RM, Khandhar AP, Krishnan KM (2012) Tracer design for magnetic particle imaging. J Appl Phys 111:07B3181–07B3185

    Article  Google Scholar 

  213. Goodwill PW, Conolly SM (2011) Experimental demonstration of X-space magnetic particle imaging. Proc SPIE7 965:79650U1–79650U6

    Google Scholar 

  214. Lüdtke-Buzug K, Rapoport DH, Schneider D. Presented at the 8th international conference on the scientific and clincal applications of magnetic carriers, Rostock, Germany, 2010

  215. Knopp T, Buzug TM (2012) Magnetic particle imaging: an introduction to imaging principles and scanner instrumentation. Spinger, Berlin

    Book  Google Scholar 

  216. Bulte JW, Gleich B, Weizenecker J, Bernard S, Walczak P, Markov DE et al (2008) Developing cellular MPI: initial experience. Proc Intl Soc Mag Reson Med 16:201–204

    Google Scholar 

  217. Markov DE, Boeve H, Gleich B, Borgert J, Antonelli A, Sfara C et al (2010) Human erythrocytes as nanoparticle carriers for magnetic particle imaging. Phys Med Biol 55:6461–6473

    Article  Google Scholar 

  218. Gilchris RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB (1957) Selective inductive heating of lymph nodes. Ann Surg 146:596–606

    Article  Google Scholar 

  219. Meyers PH, Cronic F, NIice CM (1963) Experimental approach in the use and magnetic control of metallic iron particles in the lymphatic and vascular system of dogs as a contrast and isotopic agent. Am J Roentgenol Radium Therapy Nucl Med 90:1068–1077

    Google Scholar 

  220. Häfeli UO (2004) Magnetically modulated therapeutic systems. Int J Pharm 277:19–24

    Article  Google Scholar 

  221. Barakat NS (2009) Magnetically modulated nanosystems: a unique drug-delivery platform. Nanomedicine 4:799–812

    Article  Google Scholar 

  222. McBain SC, Yiu HHP, Dobson J (2008) Magnetic nanoparticles for gene and drug delivery. Int J Nanomed 3:169–180

    Google Scholar 

  223. Lee J-H, Kim J-W, Cheon J (2013) Magnetic nanoparticles for multi-imaging and drug delivery. Mol Cells 35:274–284

    Article  Google Scholar 

  224. Slowing II, Vivero-Escoto JL, Wu C-W, Lin VS-Y (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60:1278–1288

    Article  Google Scholar 

  225. Wang LY, Luo J, Fan Q, Suzuki M, Suzuki IS, Engelhard MH et al (2005) Monodispersed core-shell Fe3O4@Au nanoparticles. J Phys Chem B 109:21593–21601

    Article  Google Scholar 

  226. Grumezescu AM (2015) Biocompatible magnetic hollow silica microspheres for drug delivery. Curr Org Chem 17:1029–1033

    Article  Google Scholar 

  227. Márquez F, Herrera GM, Campo T, Cotto M, Ducongé J, Sanz JM et al (2012) Preparation of hollow magnetite microspheres and their applications as drugs carriers. Nanoscale Res Lett 7:210 (11 pp)

    Article  Google Scholar 

  228. Fuchigami T, Kawamura R, Kitamoto Y, Nakagawa M, Namiki Y (2012) A magnetically guided anti-cancer drug delivery system using porous FePt capsules. Biomaterials 33:1682–1687

    Article  Google Scholar 

  229. Chen ML, He YJ, Chen XW, Wang JH (2012) Quantum dots conjugated with Fe3O4-filled carbon nanotubes for cancer-targeted imaging and magnetically guided drug delivery. Langmuir 28:16469–16476

    Article  Google Scholar 

  230. Masotti A, Caporali A (2013) Preparation of magnetic carbon nanotubes (Mag-CNTs) for biomedical and biotechnological applications. Int J Mol Sci 14:24619–24642

    Article  Google Scholar 

  231. Mashhadizadeh MH, Amoli-Diva M (2012) Drug-carrying amino silane coated magnetic nanoparticles as potential vehicles for delivery of antibiotics. J Nanomed Nanotechnol 3:1000139 (7 pp)

    Article  Google Scholar 

  232. Häfeli UO, Sweeney SM, Beresford BA, Humm JL, Macklis RM (1995) Effective targeting of magnetic radioactive 90Y-microspheres to tumor cells by an externally applied magnetic field. Preliminary in vitro and in vivo results. Nucl Med Biol 22:147–155

    Article  Google Scholar 

  233. Edelman ER, Langer R (1993) Optimization of release from magnetically controlled polymeric drug release devices. Biomaterials 14:621–626

    Article  Google Scholar 

  234. Chen H, Langer R (1997) Magnetically-responsive polymerized liposomes as potential oral delivery vehicles. Pharm Res 14:537–540

    Article  Google Scholar 

  235. Jain TK, Richey J, Strand M, Leslie-Pelecky DL, Flask CA, Labhasetwar V (2008) Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials 29:4012–4021

    Article  Google Scholar 

  236. Lim EK, Huh YM, Yang J, Lee K, Suh JS, Haam S (2011) pH-triggered drug-releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by MRI. Adv Mater 23:2436–2442

    Article  Google Scholar 

  237. Terreno E, Castelli DD, Viale A, Aime S (2010) Challenges for molecular magnetic resonance imaging. Chem Rev 110:3019–3042

    Article  Google Scholar 

  238. Waters EA, Wickline SA (2008) Contrast agents for MRI. Basic Res Cardiol 103:114–121

    Article  Google Scholar 

  239. Strijkers GJ, Mulder WJM, van Tilborg GAF, Nicolay K (2007) MRI contrast agents: current status and future perspectives. Anticancer Agents Med Chem 7:291–305

    Article  Google Scholar 

  240. Advanced Magnetics (1996) FDA approval for Feridex iv liver contrast agent. Drug News Persp 9:422–422

  241. Hamm B, Staks T, Tapuitz M, Maibauer R, Speidel A, Huppertz A et al (1994) Contrast-enhanced MR-imaging of liver and spleen—1st experience in humans with a new superparamagnetic iron oxide. J Magn Res Imaging 4:659–668

    Article  Google Scholar 

  242. Baiu DC, Brazel C, Bao Y, Otto M (2013) Interactions of iron oxide nanoparticles with the immune system: challenges and opportunities for their use in nano-oncology. Curr Pharm Des 19:6606–6621

    Article  Google Scholar 

  243. Brisset JC, Sigovan M, Chauveau F, Riou A, Devillard E, Desestret V et al (2011) Quantification of iron-labeled cells with positive contrast in mouse brains. Mol Imaging Biol 13:672–678

    Article  Google Scholar 

  244. Okuhata Y (1999) Delivery of diagnostic agents for magnetic resonance imaging. Adv Drug Deliv Rev 37:121–137

    Article  Google Scholar 

  245. Hasebroock KM, Serkova NJ (2009) Toxicity of MRI and CT contrast agents. Exp Opin Drug Metabol Toxicol 5:403–416

    Article  Google Scholar 

  246. Lin CH, Cai SH, Feng JH (2012) Positive contrast imaging of SPIO nanoparticles. J Nanomater 2012:734842 (7 pp)

    Google Scholar 

  247. Eibofner F, Steidle G, Kehlbach R, Bantleon R, Schick F (2010) Positive contrast imaging of iron oxide nanoparticles with susceptibility-weighted imaging. Magn Reson Med 64:1027–1038

    Article  Google Scholar 

  248. Zhu HT, Demachi K, Sekino M (2011) Phase gradient imaging for positive contrast generation to superparamagnetic iron oxide nanoparticle-labeled targets in magnetic resonance imaging. Magn Reson Med 29:891–898

    Google Scholar 

  249. Tromsdorf UI, Bruns OT, Salmen SC, Beisiegel U, Weller H (2009) A highly effective, nontoxic T-1 MR contrast agent based on ultrasmall PEGylated iron oxide nanoparticles. Nano Lett 9:4434–4440

    Article  Google Scholar 

  250. Park JY, Choi ES, Baek MJ, Lee GH, Woo S, Chang Y (2009) Water-soluble ultra small paramagnetic or superparamagnetic metal oxide nanoparticles for molecular MR imaging. Eur J Inorg Chem 2009:2477–2481

    Article  Google Scholar 

  251. Taboada E, Rodriguez E, Roig A, Oro J, Roch A, Muller RN (2007) Relaxometric and magnetic characterization of ultrasmall iron oxide nanoparticles with high magnetization. Evaluation as potential T-1 magnetic resonance imaging contrast agents for molecular imaging. Langmuir 23:4583–4588

    Article  Google Scholar 

  252. Li Z, Yi PW, Sun Q, Lei H, Zhao HL, Zhu ZH et al (2012) Ultrasmall water-soluble and biocompatible magnetic iron oxide nanoparticles as positive and negative dual contrast agents. Adv Funct Mater 22:2387–2393

    Article  Google Scholar 

  253. Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine 3:703–717

    Article  Google Scholar 

  254. Prakash A, Zhu HG, Jones CJ, Benoit DN, Ellsworth AZ, Bryant EL et al (2009) Bilayers as phase transfer agents for nanocrystals prepared in nonpolar solvents. ACS Nano 3:2139–2146

    Article  Google Scholar 

  255. Lu M, Cohen MH, Rieves D, Pazdur R (2010) FDA report: ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease. Am J Hematol 85:315–319

    Google Scholar 

  256. Goodwill PW, Saritas EU, Croft LR, Kim TN, Krishnan KM, Schaffer DV et al (2012) X-space MPI: magnetic nanoparticles for safe medical imaging. Adv Mater 24:3870–3877

    Article  Google Scholar 

  257. Khandhar AP, Ferguson RM, Arami H, Krishnan KM (2013) Monodisperse magnetite nanoparticle tracers for in vivo magnetic particle imaging. Biomaterials 34:3837–3845

    Article  Google Scholar 

  258. Douek M, Klaase J, Monypenny I, Kothari A, Zechmeister K, Brown D et al (2014) Sentinel node biopsy using a magnetic tracer versus standard technique: the SentiMAG multicentre trial. Ann Surg Oncol 21:1237–1245

    Article  Google Scholar 

  259. Wong SL, Balch CM, Hurley P, Agarwala SS, Akhurst TJ, Cochran A et al (2012) Sentinel lymph node biopsy for melanoma: American Society of Clinical Oncology and Society of Surgical Oncology joint clinical practice guideline. J Clin Oncol 30:2912–2918

    Article  Google Scholar 

  260. Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173–185

    Article  Google Scholar 

  261. Wiley DT, Webster P, Gale A, Davis ME (2013) Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. Proc Natl Acad Sci USA 110:8662–8667

    Article  Google Scholar 

  262. Maack T, Johnson V, Kau ST, Figueiredo J, Sigulem D (1979) Renal filtration, transport, and metabolism of low-molecular-weight proteins: a review. Kidney Int 16:251–270

    Article  Google Scholar 

  263. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI et al (2007) Renal clearance of quantum dots. Nat Biotechnol 25:1165–1170

    Article  Google Scholar 

  264. Sarin H (2010) Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J Angiogenes Res 2:14 (19 pp)

    Article  Google Scholar 

  265. Hume DA (2006) The mononuclear phagocyte system. Curr Opin Immunol 18:49–53

    Article  Google Scholar 

  266. Braet F, Wisse E (2002) Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp Hepatol 1:1 (17 pp)

    Article  Google Scholar 

  267. Wisse E, Jacobs F, Topal B, Frederik P, De Geest B (2008) The size of endothelial fenestrae in human liver sinusoids: implications for hepatocyte-directed gene transfer. Gene Ther 15:1193–1199

    Article  Google Scholar 

  268. Cesta MF (2006) Normal structure, function, and histology of the spleen. Toxicol Pathol 34:455–465

    Article  Google Scholar 

  269. Prabhakar U, Maeda H, Jain RK, Sevick-Muraca EM, Zamboni W, Farokhzad OC et al (2013) Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res 73:2412–2417

    Article  Google Scholar 

  270. Ahmed M, Purushotham AD, Douek M (2014) Novel techniques for sentinel lymph node biopsy in breast cancer: a systematic review. Lancet Oncol 15:e351–e362

    Article  Google Scholar 

  271. Klimberg VS, Rubio IT, Henry R, Cowan C, Colvert M, Korourian S (1999) Subareolar versus peritumoral injection for location of the sentinel lymph node. Ann Surg 229:860–865

    Article  Google Scholar 

  272. Thill M, Kurylcio A, Welter R, van Haasteren V, Grosse B, Berclaz G et al (2014) The Central-European SentiMag study: sentinel lymph node biopsy with superparamagnetic iron oxide (SPIO) vs. radioisotope. Breast 23:175–179

    Article  Google Scholar 

  273. Bourrinet P, Bengele HH, Bonnemain B, Dencausse A, Idee JM, Jacobs PM et al (2006) Preclinical safety and pharmacokinetic profile of ferumoxtran-10, an ultrasmall superparamagnetic iron oxide magnetic resonance contrast agent. Invest Radiol 41:313–324

    Article  Google Scholar 

  274. Fang C, Shi B, Pei YY, Hong MH, Wu J, Chen HZ (2006) In vivo tumor targeting of tumor necrosis factor-alpha-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Eur J Pharm Sci 27:27–36

    Article  Google Scholar 

  275. Metz S, Bonaterra G, Rudelius M, Settles M, Rummeny EJ, Daldrup-Link HE (2004) Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. Eur Radiol 14:1851–1858

    Article  Google Scholar 

  276. Matuszewski L, Persigehl T, Wall A, Schwindt W, Tombach B, Fobker M et al (2005) Cell tagging with clinically approved iron oxides: feasibility and effect of lipofection, particle size, and surface coating on labeling efficiency. Radiology 235:155–161

    Article  Google Scholar 

  277. Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5:505–515

    Article  Google Scholar 

  278. Owens DE 3rd, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102

    Article  Google Scholar 

  279. Storm G, Belliot SO, Daemen T, Lasic DD (1995) Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev 17:31–48

    Article  Google Scholar 

  280. Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61:428–437

    Article  Google Scholar 

  281. Almeida JP, Chen AL, Foster A, Drezek R (2011) In vivo biodistribution of nanoparticles. Nanomedicine 6:815–835

    Article  Google Scholar 

  282. Schlenoff JB (2014) Zwitteration: coating surfaces with zwitterionic functionality to reduce nonspecific adsorption. Langmuir 30:9625–9636

    Article  Google Scholar 

  283. Shuai XT, Merdan T, Unger F, Wittmar M, Kissel T (2003) Novel biodegradable ternary copolymers hy-PEI-g-PCL-b-PEG: synthesis, characterization, and potential as efficient nonviral gene delivery vectors. Macromolecules 36:5751–5759

    Article  Google Scholar 

  284. Jokerst JV, Lobovkina T, Zare RN, Gambhir SS (2011) Nanoparticle PEGylation for imaging and therapy. Nanomedicine 6:715–728

    Article  Google Scholar 

  285. Gong P, Grainger DW (2007) Nonfouling surfaces: a review of principles and applications for microarray capture design assays. Method Mol Biol 381:59–92

    Google Scholar 

  286. Beard JL, Dawson H, Pinero DJ (1996) Iron metabolism: a comprehensive review. Nutr Rev 54:295–317

    Article  Google Scholar 

  287. Ganz T (2013) Systemic iron homeostasis. Physiol Rev 93:1721–1741

    Article  Google Scholar 

  288. Andrews NC (1999) Disorders of iron metabolism. N Engl J Med 341:1986–1995

    Article  Google Scholar 

  289. Galvez N, Fernandez B, Sanchez P, Cuesta R, Ceolin M, Clemente-Leon M et al (2008) Comparative structural and chemical studies of ferritin cores with gradual removal of their iron contents. J Am Chem Soc 130:8062–8068

    Article  Google Scholar 

Download references

Acknowledgements

Y. Bao was partially supported by NSF-DMR 0907204, DMR 114993, and Ralph Power Junior Faculty Enhancement Award. T. Wen acknowledges the financial support from the National Natural Science Foundation of China under contract # 51401046 and # 61131005. A. C. S. Samia is supported by an NSF-CAREER Grant (DMR-1253358). A. Khandhar and Kannan M. Krishnan acknowledge support from the NIH/NIBIB grant nos. 1R41EB013520-01 and 2R42EB013520-02A1. Kannan M. Krishnan was also supported under grant nos. NIH 1R01EB013689-01/NIBIB, NSF/DMR–0501421, and NSF/DMR #0203069.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kannan M. Krishnan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, Y., Wen, T., Samia, A.C.S. et al. Magnetic nanoparticles: material engineering and emerging applications in lithography and biomedicine. J Mater Sci 51, 513–553 (2016). https://doi.org/10.1007/s10853-015-9324-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9324-2

Keywords

Navigation