Journal of Materials Science

, Volume 50, Issue 23, pp 7610–7626 | Cite as

Heavy ion induced modifications on morphological, magnetic and magneto-transport behaviour of exchange-biased Fe/NiO and NiO/Fe bilayers with Si substrate for spintronic applications

  • Neelabh Srivastava
  • P. C. Srivastava
Original Paper


Exchange-coupled interfacial structures of Fe/NiO and NiO/Fe with pSi substrate have been studied and also the effect of swift heavy ion irradiation on the morphological, structural, transport and magnetic behaviour is reported. The interfacial structures have been characterised from X-ray diffraction (XRD), magnetic force microscopy/atomic force microscopy, X-ray photoelectron spectroscopy and magnetisation characteristics. XRD and X-ray photoelectron spectroscopy studies have shown the formation of various silicide and oxide phases due to the interfacial intermixing across the interfaces which is found to affect the transport and magnetic behaviour. A significant enhancement in exchange bias field and coercivity has been observed for Fe/NiO/pSi interfacial structure on the irradiation (as compared to unirradiated ones). The observed enhanced exchange bias and coercivity on the irradiation has been understood due to creation of uncompensated surface/pinned interfacial spins. Magnetic field-induced enhanced current has been observed at low temperatures (50–250 K) for the irradiated structure suggesting the spin-mixing effect. Low temperature magneto-transport study across the irradiated interface has shown negative magnetoresistance (MR) as compared to unirradiated ones for which positive MR is observed. The observed change in MR at low temperatures has been understood in terms of diffuse scattering at grain boundaries/spin-disorder scattering and/or magnetic polarons. Role of interfacial modification/changes in chemical environment across the interfaces is invoked for the observed changes in magnetic and transport behaviour of the structures. A possible explanation for the observed changes is given.


Interfacial Structure Exchange Bias Exchange Bias Effect Exchange Bias Field Nuclear Energy Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge the help received from Pelletron group, Inter University Accelerator Centre (IUAC), New Delhi, India during the irradiation experiments. The authors are thankful to Dr. D. K. Avasthi and Dr. D. Kabiraj for their involvement during irradiation experiments and Dr. Indra Sulania, Scientist (IUAC, New Delhi, India) for performing MFM/AFM measurements. The authors are also thankful to Dr. T. Shripathi (Scientist ‘H’, UGC-DAE-CSR, Indore, India) for providing the access to XPS measurement and related fruitful discussions. One of the authors (N. Srivastava) is grateful to Council of Scientific and Industrial Research (CSIR), New Delhi, India for providing the financial support in the form of Senior Research Fellowship (CSIR-SRF).


  1. 1.
    Nogués J, Schuller IK (1999) Exchange bias. J Magn Magn Mater 192:203–232CrossRefGoogle Scholar
  2. 2.
    Nogués J, Sort J, Langlais V, Skumryev V, Surinach S, Munoz JS, Baro MD (2005) Exchange bias in nanostructures. Phys Rep 422:65–117CrossRefGoogle Scholar
  3. 3.
    Meiklejohn WH, Bean CP (1956) New magnetic anisotropy. Phys Rev 102:1413–1414CrossRefGoogle Scholar
  4. 4.
    Mauri D, Siegmann HC, Bagus PS, Kay E (1987) Simple model for thin ferromagnetic films exchange coupled to an antiferromagnetic substrate. J Appl Phys 62:3047–3049CrossRefGoogle Scholar
  5. 5.
    Malozemoff AP (1988) Mechanisms of exchange anisotropy (invited). J Appl Phys 63:3874–3879CrossRefGoogle Scholar
  6. 6.
    Koon NC (1997) Calculations of exchange bias in thin films with ferromagnetic/antiferromagnetic interfaces. Phys Rev Lett 78:4865–4868CrossRefGoogle Scholar
  7. 7.
    Schulthess TC, Butler WH (1998) Consequences of spin-flop coupling in exchange biased films. Phys Rev Lett 81:4516–4519CrossRefGoogle Scholar
  8. 8.
    Néel L (1967) Ferro-antiferromagnetic coupling in thin layers. Ann Phys (Paris) 2:61–80Google Scholar
  9. 9.
    Fassbender J, Ravelosona D, Samson Y (2004) Tailoring magnetism by light-ion irradiation. J Phys D Appl Phys 37:R179–R196CrossRefGoogle Scholar
  10. 10.
    Daalderop GH, Kelly PJ, den Broeder FJA (1992) Prediction and confirmation of perpendicular magnetic anisotropy in Co/Ni multilayers. Phys Rev Lett 68:682–685CrossRefGoogle Scholar
  11. 11.
    Prados C, Dimitrov DV, Hadjipanayis GC, Hernando A (1998) Effect of Co impurity layers on the AMR enhancement of Ni thin films. J Magn Magn Mater 177–181:1293–1295CrossRefGoogle Scholar
  12. 12.
    Wang ZG, Dufour C, Paumier E, Toulemonde M (1994) The Se sensitivity of metals under swift heavy-ion-irradiation: A transient thermal process. J Phys Condens Matter 6:6733–6750CrossRefGoogle Scholar
  13. 13.
    Ziegler JF, Biersack JP, Littmark U (2008) The stopping and range of ions in matter. Pergamon Press, New YorkGoogle Scholar
  14. 14.
    Thomas S, Thomas H, Avasthi DK, Tripathi A, Ramanujan RV, Anantharaman MR (2009) Swift heavy ion induced surface modification for tailoring coercivity in Fe–Ni based amorphous thin films. J Appl Phys 105:033910-1–033910-7Google Scholar
  15. 15.
    Kerr E, van Dijken S, Langford RM, Coey JMD (2005) Effects of Ga+ ion implantation on the magnetoresistive properties of spin valves. J Magn Magn Mater 290–291:124–126CrossRefGoogle Scholar
  16. 16.
    McGrouther D, Chapman JN, Vanhelmont FWM (2004) Effect of Ga+ ion irradiation on the structural and magnetic properties of CoFe/IrMn exchange biased bilayers. J Appl Phys 95:7772–7778CrossRefGoogle Scholar
  17. 17.
    Wang YG, McGrouther D, McVitie S, Mackenzie M, Chapman JN (2006) Investigation of the origin of the decrease in exchange biasing in Ga+ ion irradiated CoFe/IrMn films. J Appl Phys 100:073901-1–073901-7Google Scholar
  18. 18.
    Schafer D, Grande PL, Pereira LG, Geshev J (2011) Ion irradiation effects on the exchange bias in IrMn/Co films. J Appl Phys 109:023905-1–023905-4CrossRefGoogle Scholar
  19. 19.
    Mougin A, Mewes T, Jung M, Engel D, Ehresmann A, Schmoranzer H, Fassbender J, Hillebrands B (2001) Local manipulation and reversal of the exchange bias field by ion irradiation in FeNi/FeMn double layers. Phys Rev B 63:060409-1–060409-4CrossRefGoogle Scholar
  20. 20.
    Chappert C, Bernas H, Ferré J, Kottler V, Jamet JP, Chen Y, Cambril E, Devolder T, Rousseaux F, Mathet V, Launois H (1998) Planar patterned magnetic media obtained by ion irradiation. Science 280:1919–1922CrossRefGoogle Scholar
  21. 21.
    Devolder T, Chappert C, Chen Y, Cambril E, Bernas H, Jamet JP, Ferré J (1999) Sub-50 nm planar magnetic nanostructures fabricated by ion irradiation. Appl Phys Lett 74:3383–3385CrossRefGoogle Scholar
  22. 22.
    Aign T, Meyer P, Lemerle S, Jamet JP, Ferré J, Mathet V, Chappert C, Gierak J, Vieu C, Rosseaux F, Launois H, Bernas H (1998) Magnetization reversal in arrays of perpendicularly magnetized ultrathin dots coupled by dipolar interaction. Phys Rev Lett 81:5656–5659CrossRefGoogle Scholar
  23. 23.
    Ravelosona D, Chappert C, Mathet V, Bernas H (2000) Chemical order induced by ion irradiation in FePt (001) films. Appl Phys Lett 76:236–238CrossRefGoogle Scholar
  24. 24.
    Yang CH, Lai CH, Mao S (2003) Reversing exchange fields in CoFe/PtMn and CoFe/IrMn bilayers by carbon field irradiation. J Appl Phys 93:6596–6598CrossRefGoogle Scholar
  25. 25.
    Lai CH, Yang CH, Huang RT, Chen CW, Chen FR, Kai JJ, Niu H (2002) Effects of structure and ion irradiation on the exchange field of NiFe/NiMn. J Magn Magn Mater 239:390–395CrossRefGoogle Scholar
  26. 26.
    Kelly DM, Schuller IK, Korenivski V, Rao KV, Larsen KK, Bottiger J, Gyorgy EM, van Dover RB (1994) Increases in giant magnetoresistance by ion irradiation. Phys Rev B 50:3481–3484CrossRefGoogle Scholar
  27. 27.
    Lin JG, Wu MR, Ngu DH, Huang CY, Mao S (2000) Effect of ion-irradiation on the NiFe/Cu/NiFe/NiMn spin valve. J Magn Magn Mater 209:128–130CrossRefGoogle Scholar
  28. 28.
    Kac M, Zukrowski J, Toulemonde M, Kruk R, Tokman V, Polit A, Zabila Y, Dobrowolska A, Synashenko A, Marszalek M (2009) Swift iodine ion modification of the structural and magnetotransport properties of Fe/Cr systems. Nucl Instrum Methods Phys Res B 267:925–930CrossRefGoogle Scholar
  29. 29.
    Markna JH, Parmar RN, Rana DS, Kumar R, Misra P, Kukreja LM, Kuberkar DG, Malik SK (2007) Effects of swift heavy ion irradiation on La0.5Pr0.2Sr0.3MnO3 epitaxial thin films grown by pulsed laser deposition. Nucl Instrum Methods Phys Res B 256:693–697CrossRefGoogle Scholar
  30. 30.
    Conraux Y, Nozieres JP, Da Costa V, Toulemonde M, Ounadjela K (2003) Effects of swift heavy ion bombardment on magnetic tunnel junction functional properties. J Appl Phys 93:7301–7303CrossRefGoogle Scholar
  31. 31.
    Srivastava N, Srivastava PC (2012) A study on exchange coupled structures of Fe/NiO and NiO/Fe interfaced with n- and p-silicon substrates. J Appl Phys 111:123909-1–123909-9Google Scholar
  32. 32.
    Srivastava PC, Ganesan V, Sinha OP (2004) Evidence of plastic flow and recrystallization phenomena in swift (similar to 100 MeV) Si7+ ion irradiated silicon. Nucl Instrum Methods Phys Res B 222:491–496CrossRefGoogle Scholar
  33. 33.
    Pedreschi F, Sturm JM, O’Mahony JD, Flipse CFJ (2003) Magnetic force microscopy and simulations of colloidal iron nanoparticles. J Appl Phys 94:3446–3450CrossRefGoogle Scholar
  34. 34.
    Kaoumi D, Motta AT, Birtcher RC (2008) A thermal spike model of grain growth under irradiation. J Appl Phys 104:073525-1–073525-13CrossRefGoogle Scholar
  35. 35.
    Ohldag H, Scholl A, Nolting F, Arenholz E, Maat S, Young AT, Carey M, Stohr J (2003) Correlation between exchange bias and pinned interfacial spins. Phys Rev Lett 91:017203-1–017203-4CrossRefGoogle Scholar
  36. 36.
  37. 37.
    Barbieri A, Weiss W, Van Hove MA, Somorjai GA (1994) Magnetite Fe3O4(111): surface structure by LEED crystallography and energetic. Surf Sci 302:259–279CrossRefGoogle Scholar
  38. 38.
    Yu GH, Zeng LR, Zhu FW, Chai CL, Lai WY (2001) Magnetic properties and X-ray photoelectron spectroscopy study of NiO/NiFe films prepared by magnetron sputtering. J Appl Phys 90:4039–4043CrossRefGoogle Scholar
  39. 39.
    Chen X, Zhao A, Shao Z, Li C, Williams CT, Liang C (2010) Synthesis and catalytic properties for phenylacetylene hydrogenation of silicide modified nickel catalysts. J Phys Chem C 114:16525–16533CrossRefGoogle Scholar
  40. 40.
    Maillard-Schaller E, Boyanov BI, English S, Nemanich RJ (1999) Role of the substrate strain in the sheet resistance stability of NiSi deposited on Si(100). J Appl Phys 85:3614–3618CrossRefGoogle Scholar
  41. 41.
    Sinha OP, Shripathi T, Lalla NP, Srivastava PC (2004) Electrical and XPS studies of 100 MeV Si7+ ion irradiated Pd/n-GaAs devices. Appl Surf Sci 230:222–231CrossRefGoogle Scholar
  42. 42.
    Gill K, Hall G, Macevoy BC (1996) IL Nuovo Cimento. Presented at the II international conference on large-scale applications and radiation hardness of semiconductor detectors, June 28–30, 1995, Florence, vol. 109, pp. 1371–1377Google Scholar
  43. 43.
    Fert A, Bruno P (2005) Ultrathin magnetic structures II. In: Heinrich B, Bland JAC (eds) Interlayer coupling and magnetoresistance in multilayers. Springer, Berlin, pp 82–190Google Scholar
  44. 44.
    Yuan L, Ovchenkov Y, Sokolov A, Yang CS, Doudin B, Liou SH (2003) Magnetotransport properties of CrO2 films down to single-grain sizes. J Appl Phys 93:6850–6852CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of PhysicsBanaras Hindu UniversityVaranasiIndia
  2. 2.Institut für Halbleiteroptik und Funktionelle Grenzflächen (IHFG)StuttgartGermany

Personalised recommendations