Journal of Materials Science

, Volume 50, Issue 22, pp 7343–7352 | Cite as

Transparent nanocellulose-pigment composite films

  • Camila Honorato
  • Vinay Kumar
  • Jun Liu
  • Hanna Koivula
  • Chunlin Xu
  • Martti Toivakka
Original Paper


Biodegradable coatings and films of cellulose nanofibers (CNFs) or a combination of CNFs and inorganic fillers, such as clay or calcium carbonate (CaCO3), can provide a replacement for non-biodegradable plastic coatings as barrier layers in packaging boards. In this work, transparent composite films were prepared from CNFs of Pinus radiata and Eucalyptus using different amounts of clay and CaCO3 as fillers. The impact of raw material (softwood vs. hardwood), TEMPO oxidation levels and filler type (clay vs. CaCO3) on film properties was studied. Pinus radiata CNF films had superior mechanical properties to Eucalyptus CNF films, but no significant differences were observed in the barrier and optical properties. Clay seemed to work better as filler compared to CaCO3, in terms of its impact on film properties. Composite films with CaCO3 as filler were highly brittle with inferior properties to clay-CNF films, and an uneven distribution and agglomeration of the CaCO3 mineral particles was evident in SEM images. Based on the results, clay as filler in CNF coatings is preferred for targeting packaging board applications. Rheological characterisation of the CNF suspensions revealed shear-thinning behaviour, with the CNF from Eucalyptus having higher viscosities and lower power-law indices when compared to the CNF from P. radiata.


Shear Rate Composite Film Eucalyptus Oxygen Permeability Carboxylate Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Bioforest S.A. is gratefully acknowledged for the financial support.

Supplementary material

10853_2015_9291_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1577 kb)


  1. 1.
    Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441CrossRefGoogle Scholar
  2. 2.
    Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325CrossRefGoogle Scholar
  3. 3.
    Houga C, Meins JL, Borsali R, Taton D, Gnanou Y (2007) Synthesis of ATRP-induced dextran-b-polystyrene diblock copolymers and preliminary investigation of their self-assembly in water. Chem Commun 29:3063–3065CrossRefGoogle Scholar
  4. 4.
    Lowys MP, Desbrières J, Rinaudo M (2001) Rheological characterization of cellulosic microfibril suspensions. Role of polymeric additives. Food Hydrocoll 15:25–32CrossRefGoogle Scholar
  5. 5.
    Spoljaric S, Salminen A, Luong ND, Seppälä J (2014) Stable, self-healing hydrogels from nanofibrillated cellulose, poly (vinyl alcohol) and borax via reversible crosslinking. Eur Polym J 56:105–117CrossRefGoogle Scholar
  6. 6.
    Stepan AM, Ansari F, Berglund L, Gatenholm P (2014) Nanofibrillated cellulose reinforced acetylated arabinoxylan films. Compos Sci Technol 98:72–78CrossRefGoogle Scholar
  7. 7.
    Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRefGoogle Scholar
  8. 8.
    Hamedi MM, Hajian A, Fall AB, Håkansson K, Salajkova M et al (2014) Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes. ACS Nano 8:2467–2476CrossRefGoogle Scholar
  9. 9.
    Kumar V, Bollström R, Yang A, Chen Q, Chen G et al (2014) Comparison of nano- and microfibrillated cellulose films. Cellulose 21:3443–3456CrossRefGoogle Scholar
  10. 10.
    Sasso C, Zeno E, Petit-Conil M, Chaussy D, Belgacem MN et al (2010) Highly conducting polypyrrole/cellulose nanocomposite films with enhanced mechanical properties. Macromol Mater Eng 295:934–941CrossRefGoogle Scholar
  11. 11.
    Aulin C, Salazar-Alvarez G, Lindström T (2012) High strength, flexible and transparent nanofibrillated cellulose-nanoclay biohybrid films with tunable oxygen and water vapor permeability. Nanoscale 4:6622–6628CrossRefGoogle Scholar
  12. 12.
    Baez C, Considine J, Rowlands R (2014) Influence of drying restraint on physical and mechanical properties of nanofibrillated cellulose films. Cellulose 21:347–356CrossRefGoogle Scholar
  13. 13.
    Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165CrossRefGoogle Scholar
  14. 14.
    Hansen NL, Blomfeldt TJ, Hedenqvist M, Plackett D (2012) Properties of plasticized composite films prepared from nanofibrillated cellulose and birch wood xylan. Cellulose 19:2015–2031CrossRefGoogle Scholar
  15. 15.
    Kurihara T, Isogai A (2014) Properties of poly(acrylamide)/TEMPO-oxidized cellulose nanofibril composite films. Cellulose 21:291–299CrossRefGoogle Scholar
  16. 16.
    Lee K, Tammelin T, Schulfter K, Kiiskinen H, Samela J et al (2012) High performance cellulose nanocomposites: comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose. ACS Appl Mater Interfaces 4:4078–4086CrossRefGoogle Scholar
  17. 17.
    Qing Y, Sabo R, Zhu JY, Agarwal U, Cai Z et al (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr Polym 97:226–234CrossRefGoogle Scholar
  18. 18.
    Rodionova G, Saito T, Lenes M, Eriksen Ø, Gregersen Ø et al (2012) Mechanical and oxygen barrier properties of films prepared from fibrillated dispersions of TEMPO-oxidized Norway spruce and Eucalyptus pulps. Cellulose 19:705–711CrossRefGoogle Scholar
  19. 19.
    Sehaqui H, Salajkova M, Zhou Q, Berglund LA (2010) Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 6:1824–1832CrossRefGoogle Scholar
  20. 20.
    Syverud K, Chinga-Carrasco G, Toledo J, Toledo PG (2011) A comparative study of Eucalyptus and Pinus radiata pulp fibres as raw materials for production of cellulose nanofibrils. Carbohydr Polym 84:1033–1038CrossRefGoogle Scholar
  21. 21.
    Aulin C, Netrval J, Wågberg L, Lindström T (2010) Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter 6:3298–3305CrossRefGoogle Scholar
  22. 22.
    Li F, Biagioni P, Bollani M, Maccagnan A, Piergiovanni L (2013) Multi-functional coating of cellulose nanocrystals for flexible packaging applications. Cellulose 20:2491–2504CrossRefGoogle Scholar
  23. 23.
    Minelli M (2010) Investigation of mass transport properties of microfibrillated cellulose (MFC) films. J Membr Sci 358(1):67–75CrossRefGoogle Scholar
  24. 24.
    Österberg M, Vartiainen J, Lucenius J, Hippi U, Seppälä J et al (2013) A fast method to produce strong NFC films as a platform for barrier and functional materials. ACS Appl Mater Interfaces 5:4640–4647CrossRefGoogle Scholar
  25. 25.
    Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85CrossRefGoogle Scholar
  26. 26.
    Fang Z, Zhu H, Yuan Y, Ha D, Zhu S et al (2014) Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett 14:765–773CrossRefGoogle Scholar
  27. 27.
    Hu L, Zheng G, Yao J, Liu N, Weil B et al (2013) Transparent and conductive paper from nanocellulose fibers. Energy Environ Sci 6:513–518CrossRefGoogle Scholar
  28. 28.
    Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21:1595–1598CrossRefGoogle Scholar
  29. 29.
    Zhu H, Xiao Z, Liu D, Li Y, Weadock NJ et al (2013) Biodegradable transparent substrates for flexible organic-light-emitting diodes. Energy Environ Sci 6:2105–2111CrossRefGoogle Scholar
  30. 30.
    Liu A, Walther A, Ikkala O, Belova L, Berglund LA (2011) Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromolecules 12:633–641CrossRefGoogle Scholar
  31. 31.
    Wu C, Saito T, Fujisawa S, Fukuzumi H, Isogai A (2012) Ultrastrong and high gas-barrier nanocellulose/clay-layered composites. Biomacromolecules 13:1927–1932CrossRefGoogle Scholar
  32. 32.
    Spence KL, Venditti RA, Rojas OJ, Pawlak JJ, Hubbe MA (2011) Water vapor barrier properties of coated and filled microfibrillated cellulose composite films. BioResources 6:4370–4388Google Scholar
  33. 33.
    Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR et al (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33CrossRefGoogle Scholar
  34. 34.
    Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRefGoogle Scholar
  35. 35.
    Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764CrossRefGoogle Scholar
  36. 36.
    Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefGoogle Scholar
  37. 37.
    Paunonen S (2013) Strength and barrier enhancements of composites and packaging boards by nanocelluloses—a literature review. Nord Pulp Pap Res J 28:165–181CrossRefGoogle Scholar
  38. 38.
    Nechyporchuk O, Belgacem MN, Pignon F (2014) Rheological properties of micro-/nanofibrillated cellulose suspensions: wall-slip and shear banding phenomena. Carbohydr Polym 112:432–439CrossRefGoogle Scholar
  39. 39.
    Naderi A, Lindström T, Sundström J (2014) Carboxymethylated nanofibrillated cellulose: rheological studies. Cellulose 21:1561–1571CrossRefGoogle Scholar
  40. 40.
    Chen P, Yu H, Liu Y, Chen W, Wang X et al (2013) Concentration effects on the isolation and dynamic rheological behavior of cellulose nanofibers via ultrasonic processing. Cellulose 20:149–157CrossRefGoogle Scholar
  41. 41.
    Rezayati Charani P, Dehghani-Firouzabadi M, Afra E, Shakeri A (2013) Rheological characterization of high concentrated MFC gel from kenaf unbleached pulp. Cellulose 20:727–740CrossRefGoogle Scholar
  42. 42.
    Karppinen A, Saarinen T, Salmela J, Laukkanen A, Nuopponen M et al (2012) Flocculation of microfibrillated cellulose in shear flow. Cellulose 19:1807–1819CrossRefGoogle Scholar
  43. 43.
    Pahimanolis N, Hippi U, Johansson L, Saarinen T, Houbenov N et al (2011) Surface functionalization of nanofibrillated cellulose using click-chemistry approach in aqueous media. Cellulose 18:1201–1212CrossRefGoogle Scholar
  44. 44.
    Iotti M, Gregersen Ø, Moe S, Lenes M (2011) Rheological studies of microfibrillar cellulose water dispersions. J Polym Environ 19:137–145CrossRefGoogle Scholar
  45. 45.
    Agoda-Tandjawa G, Durand S, Berot S, Blassel C, Gaillard C et al (2010) Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohydr Polym 80:677–686CrossRefGoogle Scholar
  46. 46.
    Saarinen T, Lille M, Seppälä J (2009) Technical aspects on rheological characterization of microfibrillar cellulose water suspensions. Annu Trans Nord Rheol Soc 17:121–128Google Scholar
  47. 47.
    Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941CrossRefGoogle Scholar
  48. 48.
    Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491CrossRefGoogle Scholar
  49. 49.
    Liu J, Korpinen R, Mikkonen K, Willför S, Xu C (2014) Nanofibrillated cellulose originated from birch sawdust after sequential extractions: a promising polymeric material from waste to films. Cellulose 21:2587–2598CrossRefGoogle Scholar
  50. 50.
    Moberg T, Rigdahl M, Stading M, Levenstam Bragd E (2014) Extensional viscosity of microfibrillated cellulose suspensions. Carbohydr Polym 102:409–412CrossRefGoogle Scholar
  51. 51.
    Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989CrossRefGoogle Scholar
  52. 52.
    Dang Z, Zhang J, Ragauskas AJ (2007) Characterizing TEMPO-mediated oxidation of ECF bleached softwood kraft pulps. Carbohydr Polym 70:310–317CrossRefGoogle Scholar
  53. 53.
    Spence K, Venditti R, Rojas O, Habibi Y, Pawlak J (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17:835–848CrossRefGoogle Scholar
  54. 54.
    Herrera-Alonso JM, Marand E, Little JC, Cox SS (2009) Transport properties in polyurethane/clay nanocomposites as barrier materials: effect of processing conditions. J Membr Sci 337:208–214CrossRefGoogle Scholar
  55. 55.
    Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Camila Honorato
    • 1
  • Vinay Kumar
    • 2
  • Jun Liu
    • 1
  • Hanna Koivula
    • 4
  • Chunlin Xu
    • 1
    • 3
  • Martti Toivakka
    • 2
  1. 1.Process Chemistry Centre, Laboratory of Wood and Paper ChemistryÅbo Akademi UniversityÅbo/TurkuFinland
  2. 2.Laboratory of Paper Coating and Converting, Centre for Functional MaterialsÅbo Akademi UniversityTurkuFinland
  3. 3.Wallenberg Wood Science CenterKTH, the Royal Institute of TechnologyStockholmSweden
  4. 4.Department of Food and Environmental SciencesUniversity of HelsinkiHelsinkiFinland

Personalised recommendations