Journal of Materials Science

, Volume 51, Issue 2, pp 708–718 | Cite as

Morphology and properties of polypropylene/nano-CaCO3 composites prepared by supercritical carbon dioxide-assisted extrusion

  • Shihong Chen
  • Xiangdong Wang
  • Xiuqing Ma
  • Kuisheng Wang
Original Paper


Polypropylene (PP)/calcium carbonate nanoparticles (nano-CaCO3) composites were prepared using a two-stage modular extruder with the assistance of supercritical carbon dioxide (sc-CO2). The crystallization and melting behavior, crystal forms, and crystal morphology were investigated by differential scanning calorimetry, wide-angle X-ray diffraction, and polarized optical microscopy. The loading of sc-CO2 injected into the extruder was optimized to be 2.0 phr. At this optimized loading, nano-CaCO3 particles were homogeneously dispersed in PP matrix. The addition of nano-CaCO3 particles has little impact on the melting behavior of PP, but exerts significant influence on the crystalline morphology of PP/nano-CaCO3 composites. At the optimized loading of sc-CO2, the PP/nano-CaCO3 composite has the highest impact strength due to the best dispersion of nano-CaCO3 particles in the PP matrix.


Impact Strength Supercritical Carbon Dioxide Polarize Optical Microscope Dispersion Degree High Impact Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to the Fund Project for Scientific Research of Young Teachers of Beijing Technology and Business University (QNJJ2011-32) for its financial support of this work, and also express their special thanks to associate professor Song Hong from Beijing University of Chemical Technology for his technical support with TEM and to professor Jian Yu from Tsinghua University for his valuable help and suggestions.


  1. 1.
    Liang JZ, Zhu B, Ma WY (2014) Morphology and mechanical properties of PP/POE/nano-CaCO3 composites. Polym Compos. doi: 10.1002/pc.23210 Google Scholar
  2. 2.
    Lin Y, Chen H, Chan C, Wu J (2008) High impact toughness polypropylene/CaCO3 nanocomposites and the toughening mechanism. Macromolecules 41:9204–9213CrossRefGoogle Scholar
  3. 3.
    Dasari A, Zhang QX, Yu ZZ, Mai YW (2010) Toughening polypropylene and its nanocomposites with submicrometer voids. Macromolecules 43:5734–5739CrossRefGoogle Scholar
  4. 4.
    Cui YH, Jin X, Shen F, Han C, Wang JB (2009) Fabrication and characterization of in situ synthesized nano-CaCO3-reinforced polypropylene composite materials. J Vinyl Addit Technol 15:178–183CrossRefGoogle Scholar
  5. 5.
    Wu S (1988) A generalized criterion for rubber toughening: the critical matrix ligament thickness. J Appl Polym Sci 35:549–561CrossRefGoogle Scholar
  6. 6.
    Pradittham A, Charitngam N, Puttajan S, Atong D, Pechyen C (2014) Surface modified CaCO3 by palmitic acid as nucleating agents for polypropylene film: mechanical, thermal and physical properties. Energy Proc 56:264–273CrossRefGoogle Scholar
  7. 7.
    Wan W, Yu D, Guo X, Xie Y (2008) Effect of nanoparticle surface treatment on nonisothermal crystallization behavior of polypropylene/calcium carbonate nanocomposites. Polym Plast Technol Eng 47:433–442CrossRefGoogle Scholar
  8. 8.
    Wang G, Chen XY, Huang R, Zhang L (2002) Nano-CaCO3/polypropylene composites made with ultra-high-speed mixer. J Mater Sci Lett 21:985–986CrossRefGoogle Scholar
  9. 9.
    Bridge B, Cheng KH (1987) On-line ultrasonic monitoring of the extrusion of CaCO3-filled polypropylene. J Mater Sci Lett 6:219–222CrossRefGoogle Scholar
  10. 10.
    Huang HX, Jiang G, Mao SQ (2006) Microstructure and on-line shear viscosity of PP/nano-CaCO3 composites prepared by twin-screw extruder. J Mater Sci 41:4985–4988. doi: 10.1007/s10853-006-0113-9 CrossRefGoogle Scholar
  11. 11.
    Tadmor Z, Gogos G (1979) Principles of polymer processing. Interscience Publication, New YorkGoogle Scholar
  12. 12.
    Wu D, Meng Q, Liu Y, Ding Y, Chen W, Xu H, Ren D (2003) In situ bubble-stretching dispersion mechanism for additives in polymers. J Polym Sci Part B 41:1051–1058CrossRefGoogle Scholar
  13. 13.
    Yoo HJ, Han CD (1982) Oscillatory behavior of a gas bubble growing (or collapsing) in viscoelastic liquids. AIChE J 28:1002–1009CrossRefGoogle Scholar
  14. 14.
    Meng QY, Zheng X, Wu DM (2007) Analysis of nanogranule dispersion using the ISBS method. Eur Phys J Appl Phys 38:239–242CrossRefGoogle Scholar
  15. 15.
    Zheng XT, Wu DM, Meng QY, Wang KJ, Liu Y, Wan L, Ren DY (2008) Mechanical properties of low-density polyethylene/nano-magnesium hydroxide composites prepared by an in situ bubble stretching method. J Polym Res 15:59–65CrossRefGoogle Scholar
  16. 16.
    Cai LF, Huang XB, Rong MZ, Ruan WH, Zhang MQ (2006) Effect of grafted polymeric foaming agent on the structure and properties of nano-silica/polypropylene composites. Polymer 47:7043–7050CrossRefGoogle Scholar
  17. 17.
    Cai LF, Huang XB, Rong MZ, Ruan WH, Zhang MQ (2006) Fabrication of nanoparticle/polymer composites by in situ bubble-stretching and reactive compatibilization. Macromol Chem Phys 207:2093–2102CrossRefGoogle Scholar
  18. 18.
    Cai LF, Mai YL, Rong MZ, Ruan WH, Zhang MQ (2007) Interfacial effects in nano-silica/polypropylene composites fabricated by in situ chemical blowing. Express Polym Lett 1:2–7CrossRefGoogle Scholar
  19. 19.
    Zhao Y, Huang HX, Chen YK, Wu XJ (2010) SC-CO2-assisted rubber dispersion and dynamic vulcanization in blending of PP/EPDM thermoplastic olefin. J Mater Sci 45:4054–4057. doi: 10.1007/s10853-010-4488-2 CrossRefGoogle Scholar
  20. 20.
    Ding J, Ma WH, Song FJ, Qin Z (2013) Effect of nano-Calcium Carbonate on microcellular foaming of polypropylene. J Mater Sci 48:2504–2511. doi: 10.1001/s10853-012-7039-1 CrossRefGoogle Scholar
  21. 21.
    Li D, Wang C, Wang Z (2014) Foaming behaviour of microcellular foam short carbon fibres/polypropylene/nano-CaCO3 composites. Plast Rubber Compos 43:130–137CrossRefGoogle Scholar
  22. 22.
    Lai SM, Hsu RC, Hsieh CY, Chiu FC (2015) Comparisons of polycarbonate and polycarbonate/carbon nanotube nanocomposites and their microcellular foams prepared using supercritical carbon dioxide. J Mater Sci 50:2272–2283. doi: 10.1007/s10853-014-8790-2 CrossRefGoogle Scholar
  23. 23.
    Lin Y, Chen H, Chan CM, Wu J (2011) Nucleating effect of calcium stearate coated CaCO3 nanoparticles on polypropylene. J Colloid Interface Sci 354:570–576CrossRefGoogle Scholar
  24. 24.
    Zhang Z, Tao Y, Yang Z, Mai K (2008) Preparation and characteristics of nano-CaCO3 supported β-nucleating agent of polypropylene. Eur Polymer J 44:1955–1961CrossRefGoogle Scholar
  25. 25.
    Nguyen QT, Baird DG (2007) An improved technique for exfoliating and dispersing nanoclay particles into polymer matrices using supercritical carbon dioxide. Polymer 48:6923–6933CrossRefGoogle Scholar
  26. 26.
    Zhao Y, Huang HX (2008) Dynamic rheology and microstructure of polypropylene/clay nanocomposites prepared under sc-CO2 by melt compounding. Polym Test 27:129–134CrossRefGoogle Scholar
  27. 27.
    Su FH, Huang HX, Zhao Y (2011) Microstructure and mechanical properties of polypropylene/poly (ethylene-co-octene copolymer)/clay ternary nanocomposites prepared by melt blending using supercritical carbon dioxide as a processing aid. Compos B 42:421–428CrossRefGoogle Scholar
  28. 28.
    Gorena K, Okan OB, Chen L, Schadler LS, Ozisik R (2012) Supercritical carbon dioxide assisted dispersion and distribution of silica nanoparticles in polymers. J Supercrit Fluids 67:108–113CrossRefGoogle Scholar
  29. 29.
    Clark EJ, Hoffman JD (1984) Regime III crystallization in polypropylene. Macromolecules 17:878–885CrossRefGoogle Scholar
  30. 30.
    Zhang QX, Yu ZZ, Xie XL, Mai YW (2004) Crystallization and impact energy of polypropylene/CaCO3 nanocomposites with nonionic modifier. Polymer 45:5985–5994CrossRefGoogle Scholar
  31. 31.
    Ma LF, Wang WK, Bao RY, Yang W, Xie BH, Yang MB (2013) Toughening of polypropylene with β-nucleated thermoplastic vulcanizates based on polypropylene/ethylene-propylene-diene rubber blends. Mater Des 51:536–543CrossRefGoogle Scholar
  32. 32.
    Mohanty S, Nayak SK (2007) Dynamic-mechanical and thermal characterization of polypropylene/ethylene-octene copolymer blend. J Appl Polym Sci 104:3137–3144CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Shihong Chen
    • 1
    • 2
  • Xiangdong Wang
    • 2
  • Xiuqing Ma
    • 1
  • Kuisheng Wang
    • 1
  1. 1.College of Mechanical and Electrical EngineeringBeijing University of Chemical TechnologyBeijingChina
  2. 2.School of Material and Mechanical EngineeringBeijing Technology and Business UniversityBeijingChina

Personalised recommendations