Journal of Materials Science

, Volume 50, Issue 21, pp 7149–7157 | Cite as

Molecular dynamics study on stiffness and ductility in chitin–protein composite

  • Zechuan Yu
  • Denvid Lau
Original Paper


Chitin–protein composite is the structural material of many marine animals including lobster, squid, and sponge. The relationship between mechanical performance and hierarchical nanostructure in those composites attracts extensive research interests. In order to study the molecular mechanism behind, we construct atomistic models of chitin–protein composite and conduct computational tensile tests through molecular dynamics simulations. The effects of water content and chitin fiber length on the stiffness are examined. The result reveals the detrimental effect on the stiffness of chitin–protein composite due to the presence of water molecules. Meanwhile, it is found that the chitin–protein composite becomes stiffer as the embedded chitin fiber is longer. As the tensile deformation proceeds, the stress–strain curve features a saw-tooth appearance, which can be explained by the interlocked zigzag nanostructure between adjacent chitin fibers. These interlocked sites can sacrificially break for energy dissipation when the system undergoes large deformation, leading to an improvement of ductility.


Chitin Representative Volume Element Protein Interface Protein Fiber Hard Inclusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to the support from Croucher Foundation through the Start-up Allowance for Croucher Scholars with the Grant No. 9500012, and the support from the Research Grants Council (RGC) in Hong Kong through the Early Career Scheme (ECS) with the Grant No. 139113.


  1. 1.
    Tharanathan RN, Kittur FS (2003) Chitin—the undisputed biomolecule of great potential. Crit Rev Food Sci Nutr 43(1):61–87CrossRefGoogle Scholar
  2. 2.
    Ravi Kumar MN (2000) A review of chitin and chitosan applications. React Funct Polym 46(1):1–27CrossRefGoogle Scholar
  3. 3.
    Krajewska B (2004) Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microb Technol 35(2):126–139CrossRefGoogle Scholar
  4. 4.
    Ehrlich H, Simon P, Carrillo-Cabrera W, Bazhenov VV, Botting JP, Ilan M, Ereskovsky AV, Muricy G, Worch H, Mensch A (2010) Insights into chemistry of biological materials: newly discovered silica-aragonite-chitin biocomposites in demosponges. Chem Mater 22(4):1462–1471CrossRefGoogle Scholar
  5. 5.
    Chen PY, Lin AYM, Lin YS, Seki Y, Stokes AG, Peyras J, Olevsky EA, Meyers MA, McKittrick J (2008) Structure and mechanical properties of selected biological materials. J Mech Behav Biomed Mater 1(3):208–226. doi: 10.1016/j.jmbbm.2008.02.003 CrossRefGoogle Scholar
  6. 6.
    Vincent JF, Wegst UG (2004) Design and mechanical properties of insect cuticle. Arthropod Struct Dev 33(3):187–199CrossRefGoogle Scholar
  7. 7.
    Miserez A, Li Y, Waite JH, Zok F (2007) Jumbo squid beaks: inspiration for design of robust organic composites. Acta Biomater 3(1):139–149CrossRefGoogle Scholar
  8. 8.
    Politi Y, Priewasser M, Pippel E, Zaslansky P, Hartmann J, Siegel S, Li C, Barth FG, Fratzl P (2012) A spider’s fang: how to design an injection needle using chitin-based composite material. Adv Funct Mater 22(12):2519–2528CrossRefGoogle Scholar
  9. 9.
    Sachs C, Fabritius H, Raabe D (2006) Experimental investigation of the elastic–plastic deformation of mineralized lobster cuticle by digital image correlation. J Struct Biol 155(3):409–425. doi: 10.1016/j.jsb.2006.06.004 CrossRefGoogle Scholar
  10. 10.
    Romano P, Fabritius H, Raabe D (2007) The exoskeleton of the lobster Homarus americanus as an example of a smart anisotropic biological material. Acta Biomater 3(3):301–309. doi: 10.1016/j.actbio.2006.10.003 CrossRefGoogle Scholar
  11. 11.
    Raabe D, Sachs C, Romano P (2005) The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Acta Mater 53(15):4281–4292. doi: 10.1016/j.actamat.2005.05.027 CrossRefGoogle Scholar
  12. 12.
    Boßelmann F, Romano P, Fabritius H, Raabe D, Epple M (2007) The composition of the exoskeleton of two crustacea: the American lobster Homarus americanus and the edible crab cancer pagurus. Thermochim Acta 463(1–2):65–68. doi: 10.1016/j.tca.2007.07.018 CrossRefGoogle Scholar
  13. 13.
    Fabritius H-O, Sachs C, Triguero PR, Raabe D (2009) Influence of structural principles on the mechanics of a biological fiber-based composite material with hierarchical organization: The exoskeleton of the Lobster Homarus americanus. Adv Mater 21(4):391–400. doi: 10.1002/adma.200801219 CrossRefGoogle Scholar
  14. 14.
    Al-Sawalmih A, Li C, Siegel S, Fabritius H, Yi S, Raabe D, Fratzl P, Paris O (2008) Microtexture and chitin/calcite orientation relationship in the mineralized exoskeleton of the American Lobster. Adv Funct Mater 18(20):3307–3314. doi: 10.1002/adfm.200800520 CrossRefGoogle Scholar
  15. 15.
    Jin K, Feng X, Xu Z (2013) Mechanical properties of chitin–protein interfaces: a molecular dynamics study. BioNanoScience 3(3):312–320. doi: 10.1007/s12668-013-0097-2 CrossRefGoogle Scholar
  16. 16.
    Nikolov S, Petrov M, Lymperakis L, Friák M, Sachs C, Fabritius H-O, Raabe D, Neugebauer J (2010) Revealing the design principles of high-performance biological composites using Ab initio and multiscale simulations: the example of Lobster cuticle. Adv Mater 22(4):519–526CrossRefGoogle Scholar
  17. 17.
    Yu Z, Xu Z, Lau D (2014) Effect of acidity on chitin–protein interface: a molecular dynamics study. BioNanoScience 4(3):207–215. doi: 10.1007/s12668-12014-10138-12665 CrossRefGoogle Scholar
  18. 18.
    Yu Z, Lau D (2015) Development of a coarse-grained α-chitin model on the basis of MARITINI forcefield. J Mol Model 21(5):128. doi: 10.1007/s00894-015-2670-9 CrossRefGoogle Scholar
  19. 19.
    Petrov M, Lymperakis L, Friák M, Neugebauer J (2013) Ab Initio Based conformational study of the crystalline α-chitin. Biopolymers 99(1):22–34CrossRefGoogle Scholar
  20. 20.
    Sachs C, Fabritius H, Raabe D (2006) Hardness and elastic properties of dehydrated cuticle from the lobster Homarus americanus obtained by nanoindentation. J Mater Res 21(08):1987–1995. doi: 10.1557/jmr.2006.0241 CrossRefGoogle Scholar
  21. 21.
    Sachs C, Fabritius H, Raabe D (2008) Influence of microstructure on deformation anisotropy of mineralized cuticle from the lobster Homarus americanus. J Struct Biol 161(2):120–132. doi: 10.1016/j.jsb.2007.09.022 CrossRefGoogle Scholar
  22. 22.
    Raabe D, Romano P, Sachs C, Fabritius H, Al-Sawalmih A, Yi SB, Servos G, Hartwig HG (2006) Microstructure and crystallographic texture of the chitin–protein network in the biological composite material of the exoskeleton of the lobster Homarus americanus. Mater Sci Eng A 421(1–2):143–153. doi: 10.1016/j.msea.2005.09.115 CrossRefGoogle Scholar
  23. 23.
    Ji B, Gao H (2004) Mechanical properties of nanostructure of biological materials. J Mech Phys Solids 52(9):1963–1990CrossRefGoogle Scholar
  24. 24.
    Gao H, Ji B, Jäger IL, Arzt E, Fratzl P (2003) Materials become insensitive to flaws at nanoscale: lessons from nature. Proc Natl Acad Sci 100(10):5597–5600CrossRefGoogle Scholar
  25. 25.
    Ji B, Gao H (2010) Mechanical principles of biological nanocomposites. Annu Rev Mater Res 40:77–100CrossRefGoogle Scholar
  26. 26.
    Dunlop JW, Fratzl P (2013) Multilevel architectures in natural materials. Scripta Mater 68(1):8–12CrossRefGoogle Scholar
  27. 27.
    Jäger I, Fratzl P (2000) Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys J 79(4):1737–1746CrossRefGoogle Scholar
  28. 28.
    Sinko R, Mishra S, Ruiz L, Brandis N, Keten S (2013) Dimensions of biological cellulose nanocrystals maximize fracture strength. ACS Macro Lett 3:64–69CrossRefGoogle Scholar
  29. 29.
    Keten S, Xu Z, Ihle B, Buehler MJ (2010) Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk. Nat Mater 9(4):359–367CrossRefGoogle Scholar
  30. 30.
    Nova A, Keten S, Pugno NM, Redaelli A, Buehler MJ (2010) Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils. Nano Lett 10(7):2626–2634CrossRefGoogle Scholar
  31. 31.
    Chen B, Wu PD, Gao H (2009) A characteristic length for stress transfer in the nanostructure of biological composites. Compos Sci Technol 69(7–8):1160–1164. doi: 10.1016/j.compscitech.2009.02.012 CrossRefGoogle Scholar
  32. 32.
    Compton OC, Cranford SW, Putz KW, An Z, Brinson LC, Buehler MJ, Nguyen ST (2012) Tuning the mechanical properties of graphene oxide paper and its associated polymer nanocomposites by controlling cooperative intersheet hydrogen bonding. ACS Nano 6(3):2008–2019CrossRefGoogle Scholar
  33. 33.
    Lau D, Büyüköztürk O, Buehler MJ (2012) Characterization of the intrinsic strength between epoxy and silica using a multiscale approach. J Mater Res 27(14):1787–1796CrossRefGoogle Scholar
  34. 34.
    Miserez A, Schneberk T, Sun C, Zok FW, Waite JH (2008) The transition from stiff to compliant materials in squid beaks. Science 319(5871):1816–1819CrossRefGoogle Scholar
  35. 35.
    Sikorski P, Hori R, Wada M (2009) Revisit of α-chitin crystal structure using high resolution X-ray diffraction data. Biomacromolecules 10(5):1100–1105CrossRefGoogle Scholar
  36. 36.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38CrossRefGoogle Scholar
  37. 37.
    Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19CrossRefGoogle Scholar
  38. 38.
    Guvench O, Mallajosyula SS, Raman EP, Hatcher E, Vanommeslaeghe K, Foster TJ, Jamison FW, MacKerell AD Jr (2011) CHARMM additive all-atom force field for carbohydrate derivatives and its utility in polysaccharide and carbohydrate-protein modeling. J Chem Theory Comput 7(10):3162–3180CrossRefGoogle Scholar
  39. 39.
    Huang J, MacKerell AD (2013) CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J Comput Chem 34(25):2135–2145CrossRefGoogle Scholar
  40. 40.
    Beckham GT, Crowley MF (2011) Examination of the α-chitin structure and decrystallization thermodynamics at the nanoscale. J Phys Chem B 115(15):4516–4522CrossRefGoogle Scholar
  41. 41.
    Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574CrossRefGoogle Scholar
  42. 42.
    Torquato S (1998) Effective stiffness tensor of composite media: II. Applications to isotropic dispersions. J Mech Phys Solids 46(8):1411–1440CrossRefGoogle Scholar
  43. 43.
    Nikolov S, Fabritius H, Petrov M, Friák M, Lymperakis L, Sachs C, Raabe D, Neugebauer J (2011) Robustness and optimal use of design principles of arthropod exoskeletons studied by ab initio-based multiscale simulations. J Mech Behav Biomed Mater 4(2):129–145CrossRefGoogle Scholar
  44. 44.
    Miserez A, Rubin D, Waite JH (2010) Cross-linking chemistry of squid beak. J Biol Chem 285(49):38115–38124CrossRefGoogle Scholar
  45. 45.
    Smith BL, Schäffer TE, Viani M, Thompson JB, Frederick NA, Kindt J, Belcher A, Stucky GD, Morse DE, Hansma PK (1999) Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399(6738):761–763CrossRefGoogle Scholar
  46. 46.
    Gebeshuber IC, Kindt JH, Thompson JB, Del Amo Y, Stachelberger H, Brzezinski MA, Stucky GD, Morse DE, Hansma PK (2003) Atomic force microscopy study of living diatoms in ambient conditions. J Microsc 212(3):292–299. doi: 10.1111/j.1365-2818.2003.01275.x CrossRefGoogle Scholar
  47. 47.
    Dugdale TM, Dagastine R, Chiovitti A, Mulvaney P, Wetherbee R (2005) Single adhesive nanofibers from a live diatom have the signature fingerprint of modular proteins. Biophys J 89(6):4252–4260. doi: 10.1529/biophysj.105.062489 CrossRefGoogle Scholar
  48. 48.
    Sarkar A, Caamano S, Fernandez JM (2007) The mechanical fingerprint of a parallel polyprotein dimer. Biophys J 92(4):L36–L38. doi: 10.1529/biophysj.106.097741 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Architecture and Civil EngineeringCity University of Hong KongHong KongChina
  2. 2.Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations