Skip to main content
Log in

Molecular dynamics study on stiffness and ductility in chitin–protein composite

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Chitin–protein composite is the structural material of many marine animals including lobster, squid, and sponge. The relationship between mechanical performance and hierarchical nanostructure in those composites attracts extensive research interests. In order to study the molecular mechanism behind, we construct atomistic models of chitin–protein composite and conduct computational tensile tests through molecular dynamics simulations. The effects of water content and chitin fiber length on the stiffness are examined. The result reveals the detrimental effect on the stiffness of chitin–protein composite due to the presence of water molecules. Meanwhile, it is found that the chitin–protein composite becomes stiffer as the embedded chitin fiber is longer. As the tensile deformation proceeds, the stress–strain curve features a saw-tooth appearance, which can be explained by the interlocked zigzag nanostructure between adjacent chitin fibers. These interlocked sites can sacrificially break for energy dissipation when the system undergoes large deformation, leading to an improvement of ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tharanathan RN, Kittur FS (2003) Chitin—the undisputed biomolecule of great potential. Crit Rev Food Sci Nutr 43(1):61–87

    Article  Google Scholar 

  2. Ravi Kumar MN (2000) A review of chitin and chitosan applications. React Funct Polym 46(1):1–27

    Article  Google Scholar 

  3. Krajewska B (2004) Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microb Technol 35(2):126–139

    Article  Google Scholar 

  4. Ehrlich H, Simon P, Carrillo-Cabrera W, Bazhenov VV, Botting JP, Ilan M, Ereskovsky AV, Muricy G, Worch H, Mensch A (2010) Insights into chemistry of biological materials: newly discovered silica-aragonite-chitin biocomposites in demosponges. Chem Mater 22(4):1462–1471

    Article  Google Scholar 

  5. Chen PY, Lin AYM, Lin YS, Seki Y, Stokes AG, Peyras J, Olevsky EA, Meyers MA, McKittrick J (2008) Structure and mechanical properties of selected biological materials. J Mech Behav Biomed Mater 1(3):208–226. doi:10.1016/j.jmbbm.2008.02.003

    Article  Google Scholar 

  6. Vincent JF, Wegst UG (2004) Design and mechanical properties of insect cuticle. Arthropod Struct Dev 33(3):187–199

    Article  Google Scholar 

  7. Miserez A, Li Y, Waite JH, Zok F (2007) Jumbo squid beaks: inspiration for design of robust organic composites. Acta Biomater 3(1):139–149

    Article  Google Scholar 

  8. Politi Y, Priewasser M, Pippel E, Zaslansky P, Hartmann J, Siegel S, Li C, Barth FG, Fratzl P (2012) A spider’s fang: how to design an injection needle using chitin-based composite material. Adv Funct Mater 22(12):2519–2528

    Article  Google Scholar 

  9. Sachs C, Fabritius H, Raabe D (2006) Experimental investigation of the elastic–plastic deformation of mineralized lobster cuticle by digital image correlation. J Struct Biol 155(3):409–425. doi:10.1016/j.jsb.2006.06.004

    Article  Google Scholar 

  10. Romano P, Fabritius H, Raabe D (2007) The exoskeleton of the lobster Homarus americanus as an example of a smart anisotropic biological material. Acta Biomater 3(3):301–309. doi:10.1016/j.actbio.2006.10.003

    Article  Google Scholar 

  11. Raabe D, Sachs C, Romano P (2005) The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Acta Mater 53(15):4281–4292. doi:10.1016/j.actamat.2005.05.027

    Article  Google Scholar 

  12. Boßelmann F, Romano P, Fabritius H, Raabe D, Epple M (2007) The composition of the exoskeleton of two crustacea: the American lobster Homarus americanus and the edible crab cancer pagurus. Thermochim Acta 463(1–2):65–68. doi:10.1016/j.tca.2007.07.018

    Article  Google Scholar 

  13. Fabritius H-O, Sachs C, Triguero PR, Raabe D (2009) Influence of structural principles on the mechanics of a biological fiber-based composite material with hierarchical organization: The exoskeleton of the Lobster Homarus americanus. Adv Mater 21(4):391–400. doi:10.1002/adma.200801219

    Article  Google Scholar 

  14. Al-Sawalmih A, Li C, Siegel S, Fabritius H, Yi S, Raabe D, Fratzl P, Paris O (2008) Microtexture and chitin/calcite orientation relationship in the mineralized exoskeleton of the American Lobster. Adv Funct Mater 18(20):3307–3314. doi:10.1002/adfm.200800520

    Article  Google Scholar 

  15. Jin K, Feng X, Xu Z (2013) Mechanical properties of chitin–protein interfaces: a molecular dynamics study. BioNanoScience 3(3):312–320. doi:10.1007/s12668-013-0097-2

    Article  Google Scholar 

  16. Nikolov S, Petrov M, Lymperakis L, Friák M, Sachs C, Fabritius H-O, Raabe D, Neugebauer J (2010) Revealing the design principles of high-performance biological composites using Ab initio and multiscale simulations: the example of Lobster cuticle. Adv Mater 22(4):519–526

    Article  Google Scholar 

  17. Yu Z, Xu Z, Lau D (2014) Effect of acidity on chitin–protein interface: a molecular dynamics study. BioNanoScience 4(3):207–215. doi:10.1007/s12668-12014-10138-12665

    Article  Google Scholar 

  18. Yu Z, Lau D (2015) Development of a coarse-grained α-chitin model on the basis of MARITINI forcefield. J Mol Model 21(5):128. doi:10.1007/s00894-015-2670-9

    Article  Google Scholar 

  19. Petrov M, Lymperakis L, Friák M, Neugebauer J (2013) Ab Initio Based conformational study of the crystalline α-chitin. Biopolymers 99(1):22–34

    Article  Google Scholar 

  20. Sachs C, Fabritius H, Raabe D (2006) Hardness and elastic properties of dehydrated cuticle from the lobster Homarus americanus obtained by nanoindentation. J Mater Res 21(08):1987–1995. doi:10.1557/jmr.2006.0241

    Article  Google Scholar 

  21. Sachs C, Fabritius H, Raabe D (2008) Influence of microstructure on deformation anisotropy of mineralized cuticle from the lobster Homarus americanus. J Struct Biol 161(2):120–132. doi:10.1016/j.jsb.2007.09.022

    Article  Google Scholar 

  22. Raabe D, Romano P, Sachs C, Fabritius H, Al-Sawalmih A, Yi SB, Servos G, Hartwig HG (2006) Microstructure and crystallographic texture of the chitin–protein network in the biological composite material of the exoskeleton of the lobster Homarus americanus. Mater Sci Eng A 421(1–2):143–153. doi:10.1016/j.msea.2005.09.115

    Article  Google Scholar 

  23. Ji B, Gao H (2004) Mechanical properties of nanostructure of biological materials. J Mech Phys Solids 52(9):1963–1990

    Article  Google Scholar 

  24. Gao H, Ji B, Jäger IL, Arzt E, Fratzl P (2003) Materials become insensitive to flaws at nanoscale: lessons from nature. Proc Natl Acad Sci 100(10):5597–5600

    Article  Google Scholar 

  25. Ji B, Gao H (2010) Mechanical principles of biological nanocomposites. Annu Rev Mater Res 40:77–100

    Article  Google Scholar 

  26. Dunlop JW, Fratzl P (2013) Multilevel architectures in natural materials. Scripta Mater 68(1):8–12

    Article  Google Scholar 

  27. Jäger I, Fratzl P (2000) Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys J 79(4):1737–1746

    Article  Google Scholar 

  28. Sinko R, Mishra S, Ruiz L, Brandis N, Keten S (2013) Dimensions of biological cellulose nanocrystals maximize fracture strength. ACS Macro Lett 3:64–69

    Article  Google Scholar 

  29. Keten S, Xu Z, Ihle B, Buehler MJ (2010) Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk. Nat Mater 9(4):359–367

    Article  Google Scholar 

  30. Nova A, Keten S, Pugno NM, Redaelli A, Buehler MJ (2010) Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils. Nano Lett 10(7):2626–2634

    Article  Google Scholar 

  31. Chen B, Wu PD, Gao H (2009) A characteristic length for stress transfer in the nanostructure of biological composites. Compos Sci Technol 69(7–8):1160–1164. doi:10.1016/j.compscitech.2009.02.012

    Article  Google Scholar 

  32. Compton OC, Cranford SW, Putz KW, An Z, Brinson LC, Buehler MJ, Nguyen ST (2012) Tuning the mechanical properties of graphene oxide paper and its associated polymer nanocomposites by controlling cooperative intersheet hydrogen bonding. ACS Nano 6(3):2008–2019

    Article  Google Scholar 

  33. Lau D, Büyüköztürk O, Buehler MJ (2012) Characterization of the intrinsic strength between epoxy and silica using a multiscale approach. J Mater Res 27(14):1787–1796

    Article  Google Scholar 

  34. Miserez A, Schneberk T, Sun C, Zok FW, Waite JH (2008) The transition from stiff to compliant materials in squid beaks. Science 319(5871):1816–1819

    Article  Google Scholar 

  35. Sikorski P, Hori R, Wada M (2009) Revisit of α-chitin crystal structure using high resolution X-ray diffraction data. Biomacromolecules 10(5):1100–1105

    Article  Google Scholar 

  36. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  Google Scholar 

  37. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19

    Article  Google Scholar 

  38. Guvench O, Mallajosyula SS, Raman EP, Hatcher E, Vanommeslaeghe K, Foster TJ, Jamison FW, MacKerell AD Jr (2011) CHARMM additive all-atom force field for carbohydrate derivatives and its utility in polysaccharide and carbohydrate-protein modeling. J Chem Theory Comput 7(10):3162–3180

    Article  Google Scholar 

  39. Huang J, MacKerell AD (2013) CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J Comput Chem 34(25):2135–2145

    Article  Google Scholar 

  40. Beckham GT, Crowley MF (2011) Examination of the α-chitin structure and decrystallization thermodynamics at the nanoscale. J Phys Chem B 115(15):4516–4522

    Article  Google Scholar 

  41. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574

    Article  Google Scholar 

  42. Torquato S (1998) Effective stiffness tensor of composite media: II. Applications to isotropic dispersions. J Mech Phys Solids 46(8):1411–1440

    Article  Google Scholar 

  43. Nikolov S, Fabritius H, Petrov M, Friák M, Lymperakis L, Sachs C, Raabe D, Neugebauer J (2011) Robustness and optimal use of design principles of arthropod exoskeletons studied by ab initio-based multiscale simulations. J Mech Behav Biomed Mater 4(2):129–145

    Article  Google Scholar 

  44. Miserez A, Rubin D, Waite JH (2010) Cross-linking chemistry of squid beak. J Biol Chem 285(49):38115–38124

    Article  Google Scholar 

  45. Smith BL, Schäffer TE, Viani M, Thompson JB, Frederick NA, Kindt J, Belcher A, Stucky GD, Morse DE, Hansma PK (1999) Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399(6738):761–763

    Article  Google Scholar 

  46. Gebeshuber IC, Kindt JH, Thompson JB, Del Amo Y, Stachelberger H, Brzezinski MA, Stucky GD, Morse DE, Hansma PK (2003) Atomic force microscopy study of living diatoms in ambient conditions. J Microsc 212(3):292–299. doi:10.1111/j.1365-2818.2003.01275.x

    Article  Google Scholar 

  47. Dugdale TM, Dagastine R, Chiovitti A, Mulvaney P, Wetherbee R (2005) Single adhesive nanofibers from a live diatom have the signature fingerprint of modular proteins. Biophys J 89(6):4252–4260. doi:10.1529/biophysj.105.062489

    Article  Google Scholar 

  48. Sarkar A, Caamano S, Fernandez JM (2007) The mechanical fingerprint of a parallel polyprotein dimer. Biophys J 92(4):L36–L38. doi:10.1529/biophysj.106.097741

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the support from Croucher Foundation through the Start-up Allowance for Croucher Scholars with the Grant No. 9500012, and the support from the Research Grants Council (RGC) in Hong Kong through the Early Career Scheme (ECS) with the Grant No. 139113.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denvid Lau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Lau, D. Molecular dynamics study on stiffness and ductility in chitin–protein composite. J Mater Sci 50, 7149–7157 (2015). https://doi.org/10.1007/s10853-015-9271-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9271-y

Keywords

Navigation