Journal of Materials Science

, Volume 50, Issue 24, pp 7866–7874 | Cite as

Bath temperature and deposition potential dependences of CuSCN nanorod arrays prepared by electrochemical deposition

  • Xiaoyan Gan
  • Keyong Liu
  • Xiangjun Du
  • Liling Guo
  • Hanxing Liu
Original Paper


In this study, we report on the electrodeposition of p-type semiconductor copper thiocyanate (CuSCN) nanorods on ITO substrate from an aqueous solution. The influence of the bath temperature and deposition potential on the properties of CuSCN layers was studied. Nanorods deposited at low temperature (25 °C) exhibited better crystalline quality and orientation along the c-axis than the nanorods grown at elevated temperatures. The deposition potential turned out to influence strongly the crystallographic orientation, the morphology, as well as the optical properties of the product. Mott–Schottky measurement demonstrates that the CuSCN nanorods are p-type semiconductor, with a hole concentration (N A) eight times larger than that of the 2D thin films when the cylindrical geometry of the nanorods was taken into consideration. The CuSCN nanorods obtained in this study can be used as inexpensive inorganic hole-transporting material in solar energy application and it offers new possibilities to fabricate nanostructured solar cells in reversed process, which starts from the formation of nanostructured p-type electrode.


Bath Temperature Nanorod Array Deposition Potential KSCN Perovskite Solar Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by the National Natural Science Foundation of China (51372187, 51405356), the Postdoctoral Science Foundation of China (2014M550415), and the Innovation Research Foundation of Wuhan University of Technology (2014-IV-037).


  1. 1.
    Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051CrossRefGoogle Scholar
  2. 2.
    Etgar L, Gao P, Xue Z, Peng Q, Chandiran AK, Liu B, Nazeeruddin MK, Gräetzel M (2012) Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J Am Chem Soc 134(42):17396–17399CrossRefGoogle Scholar
  3. 3.
    Im JH, Lee CR, Lee JW, Park SW, Park NG (2011) 6.5 % efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3(10):4088–4093CrossRefGoogle Scholar
  4. 4.
    Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Gräetzel M, Park NG (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9 %. Sci Rep 2(591):1–7Google Scholar
  5. 5.
    Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107):643–647CrossRefGoogle Scholar
  6. 6.
    Burschka J, Pellet N, Moon S-J, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458):316–319CrossRefGoogle Scholar
  7. 7.
    Zhou H, Chen Q, Li G, Luo S, Song T-b, Duan H-S, You J, You J, Liu Y, Yang Y (2014) Interface engineering of highly efficient perovskite solar cells. Science 345(6196):542–546CrossRefGoogle Scholar
  8. 8.
    Heo JH, Im SH, Noh JH, Mandal TN, Lim CS, Chang JA, Lee YH, Kim H-J, Sarkar A, Nazeeruddin MK, Gräetzel M, Seok SI (2013) Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat Photonics 7(6):487–492CrossRefGoogle Scholar
  9. 9.
    Malinkiewicz O, Yella A, Lee YH, Espallargas GM, Graetzel M, Nazeeruddin MK, Bolink HJ (2014) Perovskite solar cells employing organic charge-transport layers. Nat Photonics 8(2):128–132CrossRefGoogle Scholar
  10. 10.
    Jeon NJ, Lee J, Noh JH, Nazeeruddin MK, Gräetzel M, Seok SI (2013) Efficient inorganic organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials. J Am Chem Soc 135(51):19087–19090CrossRefGoogle Scholar
  11. 11.
    Edri E, Kirmayer S, Henning A, Mukhopadhyay S, Gartsman K, Rosenwaks Y, Hodes G, Cahen D (2014) Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). Nano Lett 14:1000–1004CrossRefGoogle Scholar
  12. 12.
    Pattanasattayavong P, Ndjawa GON, Zhao K, Chou KW, Yaacobi-Gross N, O’Regan BC, Amassian A, Anthopoulos TD (2012) Electric field-induced hole transport in copper(i) thiocyanate (CuSCN) thin-films processed from solution at room temperature. Chem Commun 49:4154–4156CrossRefGoogle Scholar
  13. 13.
    Pattanasattayavong P, Yaacobi-Gross N, Zhao K, Ndjawa GON, Li J, Yan F, O’Regan BC, Amassian A, Anthopoulos TD (2013) Hole-transporting transistors and circuits based on the transparent inorganic semiconductor copper(I) thiocyanate (CuSCN) processed from solution at room temperature. Adv Mater 25:1504–1509CrossRefGoogle Scholar
  14. 14.
    Kumara G, Konno A, Senadeera GKR, Jayaweera PVV, De Silva D, Tennakone K (2001) Dye-sensitized solar cell with the hole collector p-CuSCN deposited from a solution in n-propyl sulphide. Sol Energy Mater Sol Cells 69(2):195–199CrossRefGoogle Scholar
  15. 15.
    Perera VPS, Senevirathna MKI, Pitigala P, Tennakone K (2005) Doping CuSCN films for enhancement of conductivity: application in dye-sensitized solid-state solar cells. Sol Energy Mater Sol Cells 86(3):443–450CrossRefGoogle Scholar
  16. 16.
    Sankapal BR, Goncalves E, Ennaoui A, Lux-Steiner MC (2004) Wide band gap p-type windows by CBD and SILAR methods. Thin Solid Films 451:128–132CrossRefGoogle Scholar
  17. 17.
    Gao XD, Li XM, Yu WD, Qiu JJ, Gan XY (2008) Room-temperature deposition of nanocrystalline CuSCN film by the modified successive ionic layer adsorption and reaction method. Thin Solid Films 517(2):554–559CrossRefGoogle Scholar
  18. 18.
    Wu WB, Jin ZG, Hua Z, Fu YN, Qiu JJ (2005) Growth mechanisms of CuSCN films electrodeposited on ITO in EDTA-chelated copper(II) and KSCN aqueous solution. Electrochim Acta 50(11):2343–2349CrossRefGoogle Scholar
  19. 19.
    Liu C, Wu WB, Liu K, Li M, Hu G, Xu H (2012) Orientation growth and electrical property of CuSCN films associated with the surface states. CrystEngComm 14(20):6750–6754CrossRefGoogle Scholar
  20. 20.
    O’Regan B, Schwartz DT (1995) Efficient photo-hole injection from adsorbed cyanine dyes into electrodeposited copper(Ι) thiocyanate thin films. Chem Mater 7:1349–1354CrossRefGoogle Scholar
  21. 21.
    Huang MC, Wang T, Tseng YT, Wu CC, Lin JC, Hsu WY, Chang WS, Chen IC, Peng KC (2015) Influence of annealing on microstructural and photoelectrochemical characteristics of CuSCN thin films via electrochemical process. J Alloys Compd 622:669–675CrossRefGoogle Scholar
  22. 22.
    Selk Y, Yoshida T, Oekermann T (2008) Variation of the morphology of electrodeposited copper thiocyanate films. Thin Solid Films 516(20):7120–7124CrossRefGoogle Scholar
  23. 23.
    Kamiya K, Hashimoto K, Nakanishi S (2012) Acceleration effect of adsorbed thiocyanate ions on electrodeposition of CuSCN, causing spontaneous electrochemical oscillation. Chem Phys Lett 530:77–80CrossRefGoogle Scholar
  24. 24.
    Engelhardt R, Könenkamp R (2001) Electrodeposition of compound semiconductors in polymer channels of 100 nm diameter. J Appl Phys 90:4287–4289CrossRefGoogle Scholar
  25. 25.
    Chappaz-Gillot C, Salazar R, Berson S, Ivanova V (2012) Room temperature template-free electrodeposition of CuSCN nanowires. Electrochem Commun 24:1–4CrossRefGoogle Scholar
  26. 26.
    Sanchez S, Chappaz-Gillot C, Salazar R, Muguerra H, Arbaoui E, Berson S, Lévy-Clément C, Ivanova V (2012) Comparative study of ZnO and CuSCN semiconducting nanowire electrodeposition on different substrates. J Solid State Electrochem 17:391–398CrossRefGoogle Scholar
  27. 27.
    Aldakov D, Chappaz-Gillot C, Salazar R, Delaye V, Welsby KA, Ivanova V, Dunstan PR (2014) Properties of electrodeposited CuSCN 2D layers and nanowires influenced by their mixed domain structure. J Phys Chem C 118(29):16095–16103CrossRefGoogle Scholar
  28. 28.
    Chappaz-Gillot C, Berson S, Salazar R, Lechêne B, Aldakov D, Delaye V, Guillerez S, Ivanova V (2014) Polymer solar cells with electrodeposited CuSCN nanowires as new efficient hole transporting layer. Sol Energy Mater Sol Cells 120:163–167CrossRefGoogle Scholar
  29. 29.
    Wu WB (2005) Diploma Thesis, Tianjin University, ChinaGoogle Scholar
  30. 30.
    Wan LJ, Yau SL, Itaya K (1997) Structure of thiocyanate adlayers on Rh(111): an in situ STM study. J Solid State Electrochem 1(1):45–52CrossRefGoogle Scholar
  31. 31.
    Ji W, Yue GQ, Ke FS, Wu S, Zhao HB, Chen LY, Wang SY, Jia Y (2012) Electronic Structures and Optical Properties of CuSCN with Cu Vacancies. J Korean Phys Soc 60(8):1253–1257CrossRefGoogle Scholar
  32. 32.
    Ni Y, Jin Z, FuY (2007) Electrodeposition of p-type CuSCN thin films by a new aqueous electrolyte with triethanolamine chelation. J Am Ceram Soc 90(9):2966–2973CrossRefGoogle Scholar
  33. 33.
    Shaaban ER (2014) Microstructure parameters and optical properties of cadmium ferrite thin films of variable thickness. Appl Phys A 115:919–925CrossRefGoogle Scholar
  34. 34.
    Mora-Seró Iván, Fabregat-Santiago F, Denier B, Bisquert J (2006) Determination of carrier density of ZnO nanowires by electrochemical techniques. Appl Phys Lett 89:203117CrossRefGoogle Scholar
  35. 35.
    Liu H, Piret G, Sieber B, Laureyns J, Roussel P, Xu W, Boukherroub R, Szunerits S (2009) Electrochemical impedance spectroscopy of ZnO nanostructures. Electrochem Commun 11(5):945–949CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Xiaoyan Gan
    • 1
    • 2
  • Keyong Liu
    • 3
  • Xiangjun Du
    • 3
  • Liling Guo
    • 3
  • Hanxing Liu
    • 3
  1. 1.Hubei Key Laboratory of Advanced Technology for Automotive ComponentsWuhan University of TechnologyWuhanChina
  2. 2.Hubei Collaborative Innovation Center for Automotive Components TechnologyWuhan University of TechnologyWuhanChina
  3. 3.School of Material Science and EngineeringWuhan University of TechnologyWuhanChina

Personalised recommendations