Journal of Materials Science

, Volume 50, Issue 21, pp 7104–7114 | Cite as

C2/m-carbon: structural, mechanical, and electronic properties

Original Paper


The structural, mechanical, and electronic properties of C2/m-carbon were studied utilizing the first-principles calculations. The calculated lattice parameters and elastic constants of diamond are in excellent agreement with the available experimental data, indicating our calculations for C2/m-carbon are valid and believable. The calculated elastic constants indicate that C2/m-carbon is mechanically stable according to the elastic stability criteria under pressure. Furthermore, the elastic anisotropy has been visualized in detail by plotting the directional dependence of Poisson’s ratio, Young’s modulus, and shear modulus, whereas the calculated values of Poisson’s ratio and B/G present their brittle manner. B/G increases under increasing pressure with B/G = 1.75 at about 260.74 GPa and v increases observed with increasing pressure with v = 0.26 at about 261.35 GPa for C2/m-carbon, respectively. Our calculations predict that C2/m-carbon is an indirect semiconductor with wide band gap of 4.197 eV.


Shear Modulus Bulk Modulus Superhard Material Elastic Anisotropy Carbon Allotrope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Fund for Talents of Yunnan Province, China (Grant No. KKSY201403006).


  1. 1.
    Sung CM, Sung M (1996) Carbon nitride and other speculative superhard materials. Mater Chem Phys 43:1–18CrossRefGoogle Scholar
  2. 2.
    Haines J, Leger J, Bocquillon G (2001) Synthesis and design of superhard materials. Annu Rev Mater Res 31:1CrossRefGoogle Scholar
  3. 3.
    Hu M, Zhao ZS, Tian F, Oganov AR, Wang QQ, Xiong M, Fan CZ, Wen B, He JL, Yu DL, Wang HT, Xu B, Tian YJ (2013) Compressed carbon nanotubes: a family of new multifunctional carbon allotropes. Sci Rep 3:1331Google Scholar
  4. 4.
    Selli D, Baburin IA, Martonák R, Leoni S (2011) Superhard sp3 carbon allotropes with odd and even ring topologies. Phys Rev B 84: Art no 161411Google Scholar
  5. 5.
    Zhao Z, Xu B, Zhou XF, Wang LM, Wen B, He J, Liu Z, Wang HT, Tian Y, (2011) Novel superhard carbon: C-centered orthorhombic C8. Phys Rev Lett 107: Art no 215502Google Scholar
  6. 6.
    Amsler M, Flores-Livas JA, Lehtovaara L, Balima F, Ghasemi SA, Machon D, Pailhès S, A Willand, Caliste D, Botti S, San Miguel A, Goedecker S, MAL Marques (2012) Crystal structure of cold compressed graphite. Phys Rev Lett 108: Art no 065501Google Scholar
  7. 7.
    Wang JT, Chen C, Kawazoe Y (2012) Orthorhombic carbon allotrope of compressed graphite: Ab initio calculations. Phys Rev B 85: Art no 033410Google Scholar
  8. 8.
    He CY, Sun LZ, Zhang CX, Zhong JX (2013) Two viable three-dimensional carbon semiconductors with an entirely sp2 configuration. Phys Chem Chem Phys 15:680–684CrossRefGoogle Scholar
  9. 9.
    He CY, Sun LZ, Zhang CX, Peng XY, Zhang KW, Zhong JX (2012) Four superhard carbon allotropes: a first-principles study. Phys Chem Chem Phys 14:8410–8414CrossRefGoogle Scholar
  10. 10.
    Kvashnina YA, Kvashnin AG, Sorokin PB (2013) Investigation of new superhard carbon allotropes with promising electronic properties. J Appl Phys 114: art no 183708Google Scholar
  11. 11.
    Xie HX, Yin FX, Yu T (2014) Mechanism for direct graphite-to-diamond phase transition. Sci Rep 4:5930Google Scholar
  12. 12.
    He CY, Zhong JX (2014) M585, a low energy superhard monoclinic carbon phase. Solid State Commun 181:24–27CrossRefGoogle Scholar
  13. 13.
    Martoňák R, Oganov AR, Glass CW (2007) Crystal structure prediction and simulations of structural transformations: metadynamics and evolutionary algorithms. Phase Transit 80:277–298CrossRefGoogle Scholar
  14. 14.
    Zhu Q, Oganov AR, Lyakhov AO (2012) Evolutionary metadynamics: a novel method to predict crystal structures. CrystEngComm 14:3596–3601CrossRefGoogle Scholar
  15. 15.
    Boulfelfel SE, Zhu Q, Oganov AR (2012) Novel sp3 forms of carbon predicted by evolutionary metadynamics and analysis of their synthesizability using transition path sampling. J Superhard Mater 34:350–359CrossRefGoogle Scholar
  16. 16.
    Finkelstein GJ, Dera PK, Jahn S, Oganov AR, Holl CM, Meng Y, Duffy TS (2014) Phase transitions and equation of state of forsterite to 90 GPa from single-crystal X-ray diffraction and molecular modeling. Am Miner 99:35–43CrossRefGoogle Scholar
  17. 17.
    Oganov AR, Glass CW (2008) Evolutionary crystal structure prediction as a tool in materials design. J Phys: Condens Matter 20:064210Google Scholar
  18. 18.
    Oganov AR, Ma YM, Lyakhov AO, Valle M, Gatti C (2010) Evolutionary crystal structure prediction as a method for the discovery of minerals and materials. Rev Miner Geochem 71:271–298CrossRefGoogle Scholar
  19. 19.
    Oganov AR, Lyakhov AO, Valle M (2011) How evolutionary crystal structure prediction works and why. Acc Chem Res 44:227–237CrossRefGoogle Scholar
  20. 20.
    Lyakhov AO, Oganov AR, Stokes HT, Zhu Q (2013) New developments in evolutionary structure prediction algorithm USPEX. Comput Phys Commun 184:1172–1182CrossRefGoogle Scholar
  21. 21.
    Oganov AR, Glass CW (2006) Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J Chem Phys 124:244704CrossRefGoogle Scholar
  22. 22.
    Li Q, Ma YM, Oganov AR, Wang HB, Wang H, Xu Y, Cui T, Mao HK, Zou GT (2009) Superhard monoclinic polymorph of carbon. Phys Rev Lett 102: Art no 175506Google Scholar
  23. 23.
    Umemoto K, Wentzcovitch RM, Saito S, Miyake T (2010) Body-centered tetragonal C4: a viable sp3 carbon allotrope. Phys Rev Lett 104: Art no 125504Google Scholar
  24. 24.
    Zhu Q, Zeng Q, Oganov AR (2012) Systematic search for low-enthalpy sp3 carbon allotropes using evolutionary metadynamics. Phys Rev B 85: Art no 201407Google Scholar
  25. 25.
    Boulfelfel SE, Oganov AR, Leoni S (2012) Understanding the nature of ‘‘superhard graphite. Sci Rep 2: Art no 471Google Scholar
  26. 26.
    Wang Y, Lee KKM (2012) From soft to superhard: fifty years of experiments on cold-compressed Graphite. J Superhard Mater 34:360–370CrossRefGoogle Scholar
  27. 27.
    Zhang M, Liu HY, Du YH, Zhang XX, Wang YC, Li Q (2013) Orthorhombic C32: a novel superhard sp3 carbon allotrope. Phys Chem Chem Phys 15:14120–14125CrossRefGoogle Scholar
  28. 28.
    Liu YM, Lu MC, Zhang M (2014) First-principles study of a novel superhard sp3 carbon allotrope. Phys Lett A 378:3326CrossRefGoogle Scholar
  29. 29.
    Wei Q, Zhang MG, Yan HY, Lin ZZ, Zhu X (2014) Structural, electronic and mechanical properties of Imma-carbon. EPL 107: Art no 27007Google Scholar
  30. 30.
    Huang Q, Yu D, Zhao Z, Fu S, Xiong M, Wang Q, Gao Y, Luo K, He J, Tian Y (2012) First-principles study of O-BN: A sp3-bonding boron nitride allotrope. J Appl Phys 112: Art no 053518Google Scholar
  31. 31.
    Fan QY, Wei Q, Chai CC, Yan HY, Zhang MG, Lin ZZ, Zhang ZX, Zhang JQ, Zhang DY (2015) Structural, mechanical, and electronic properties of P3m1-BCN. J Phys Chem Solids 79:89–96CrossRefGoogle Scholar
  32. 32.
    Lia D, Tian FB, Chu BH, Duan DF, Wei SL, Lv YZ, Zhang HD, Wang L, Lu N, Liu BB, Cui T (2015) Cubic C96: a novel carbon allotrope with a porous nanocube network. J Mater Chem A 3:10448–10452CrossRefGoogle Scholar
  33. 33.
    Tian F, Dong X, Zhao ZS, He JL, Wang HT (2012) Superhard F-carbon predicted by ab initio particle-swarm optimization methodology. J Phys: Condens Matter 24: Art no 165504Google Scholar
  34. 34.
    Wang JT, Chen C, Kawazoe Y (2011) Low-temperature phase transformation from graphite to sp3 orthorhombic carbon. Phys Rev Lett 106: Art no 075501Google Scholar
  35. 35.
    Li ZP, Gao FM, Xu ZM (2012) Strength, hardness, and lattice vibrations of Z-carbon and W-carbon: first-principles calculations. Phys Rev B 85: Art no 144115Google Scholar
  36. 36.
    He CY, Sun LZ, Zhang CX, Peng XY, Zhang KW, Zhong JX (2012) New superhard carbon phases between graphite and diamond. Solid State Commun 152:1560–1563CrossRefGoogle Scholar
  37. 37.
    Li D, Bao K, Tian FB, Zeng ZW, He Z, Liu BB, Cui T (2012) Lowest enthalpy polymorph of cold-compressed graphite phase. Phys Chem Chem Phys 14:4347–4350CrossRefGoogle Scholar
  38. 38.
    Zhang XX, Wang YC, Lv J, Zhu CY, Li Q, Zhang M, Li Q, Ma Y (2013) First-principles structural design of superhard materials. J Chem Phys 138:114101CrossRefGoogle Scholar
  39. 39.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864CrossRefGoogle Scholar
  40. 40.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133CrossRefGoogle Scholar
  41. 41.
    Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Payne MC (2005) First principles methods using CASTEP. Z Kristallogr 220:567–570CrossRefGoogle Scholar
  42. 42.
    Pfrommer BG, Côté M, Louie SG, Cohen ML (1997) Relaxation of crystals with the quasi- Newton method. J Comput Phys 131:233–240CrossRefGoogle Scholar
  43. 43.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77: Art no 3865Google Scholar
  44. 44.
    Ceperley DM, Alder BJ (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45: Art no 566Google Scholar
  45. 45.
    Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23: Art no 5048Google Scholar
  46. 46.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13: Art no 5188Google Scholar
  47. 47.
    Grimsditch M, Zouboulis ES, Polian A (1994) Elastic constants of boron nitride. J Appl Phys 76:832CrossRefGoogle Scholar
  48. 48.
    Wu ZJ, Zhao EJ, Xiang HP, Hao XF, Liu XJ, Meng J (2007) Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys Rev B 76: Art no 054115Google Scholar
  49. 49.
    Schwoerer-Böhning M, Macrander AT, Arms DA (1998) Phonon dispersion of diamond measured by inelastic X-ray scattering. Phys Rev Lett 80: Art no 5572Google Scholar
  50. 50.
    Voigt W (1928) Lehrburch der Kristallphysik. Teubner, LeipzigGoogle Scholar
  51. 51.
    Lyakhov AO, Oganov AR (2011) Evolutionary search for superhard materials: methodology and applications to forms of carbon and TiO. Phys Rev B 84: Art no 092103Google Scholar
  52. 52.
    Marmier A, Lethbridge ZAD, Walton RI, Smith CW, Parker SC, Evans KE (2010) ElAM: a computer program for the analysis and representation of anisotropic elastic properties. Comput Phys Commun 181:2102–2115CrossRefGoogle Scholar
  53. 53.
    Wei Q, Zhang MG, Guo L, Yan HY, Zhu X, Lin ZZ, Guo P (2013) Ab initio studies of novel carbon nitride phase C2N2(CH2). Chem Phys 415:36–43CrossRefGoogle Scholar
  54. 54.
    Hu WC, Liu Y, Li DJ, Zeng XQ, Xu CS (2014) First-principles study of structural and electronic properties of C14-type Laves phase Al2Zr and Al2Hf. Comput Mater Sci 83:27–34CrossRefGoogle Scholar
  55. 55.
    Ozisik HB, Colakoglu K, Deligoz E (2012) First-principles study of structural and mechanical properties of AgB2 and AuB2 compounds under pressure. Comput Mater Sci 51:83–90CrossRefGoogle Scholar
  56. 56.
    Lewandowski JJ, Wang WH, Greer AL (2005) Intrinsic plasticity or brittleness of metallic glasses. Philos Mag Lett 85:77–87CrossRefGoogle Scholar
  57. 57.
    Yan HY, Zhang MG (2014) Theoretical investigation on compressibility, electronic and thermodynamic properties of single crystal PtAs2 under high pressure. Comput Mater Sci 86:124–129CrossRefGoogle Scholar
  58. 58.
    Sithole HM (2000) Electronic and atomistic simulation of FeS2 (Ph.D. thesis), University of the North South AfricaGoogle Scholar
  59. 59.
    Petrescu ML (2004) Boron nitride theoretical hardness compared to carbon polymorphs. Diamond Relat Mater 13:1848–1853CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Mengjiang Xing
    • 1
  • Binhua Li
    • 1
  • Zhengtao Yu
    • 1
  • Qi Chen
    • 1
  1. 1.Faculty of Information Engineering & AutomationKunming University of Science and TechnologyKunmingPeople’s Republic of China

Personalised recommendations