Journal of Materials Science

, Volume 51, Issue 1, pp 375–381 | Cite as

Aluminum hydroxide multilayer assembly capable of extinguishing flame on polyurethane foam

  • Merid Haile
  • Sandra Fomete
  • Ilse D. Lopez
  • Jaime C. Grunlan
50th Anniversary


Polyurethane foam found in household furnishings and bedding creates a severe fire hazard, resulting in loss of life and property each year. In an effort to reduce the flammability of polyurethane foam, a polyelectrolyte multilayer (PEM) coating, comprised of polyethylenimine and polyacrylic acid-stabilized aluminum hydroxide (ATH), was deposited onto foam using layer-by-layer (LbL) assembly. PEM coatings with and without incorporation of ATH were deposited and compared to assess the effectiveness of ATH on flame suppression. All recipes resulted in conformal coatings, maintaining the open cellular structure of the foam. Only three bilayers of PEI/PAA-ATH retained the shape of foam after exposure to a butane torch flame for 10 s. With six bilayers, the flame was extinguished, which prevented flashover. Cone calorimetry revealed that this 6 BL coated foam exhibited a 64 % reduction in peak heat release rate and a 44 % reduction in maximum average rate of heat emission. This work demonstrates an extraordinarily effective flame-retardant nanocoating that uses environmentally benign chemistry and relatively few deposition steps, prepared using LbL assembly.


Foam Flame Retardant Heat Release Rate Aluminum Hydroxide Polyurethane Foam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge Dr. Alexander Morgan at the University of Dayton Research Institute for cone calorimeter testing and helpful discussions. The authors further acknowledge the Texas A&M Engineering Experiment Station (TEES) and the Microscopy and Imaging Center (MIC) for infrastructural support of this work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2015_9258_MOESM1_ESM.docx (2.4 mb)
Supplementary material 1 (DOCX 2503 kb)


  1. 1.
    Karter MJ (2013) Fire loss in the United States during 2012. National Fire Protection Association, QuincyGoogle Scholar
  2. 2.
    Hull TR, Kandola BK (2009) Fire retardancy of polymers: new strategies and mechanisms. R Soc Chem, LondonGoogle Scholar
  3. 3.
    Babrauskas V, Blum A, Daley R, Birnbaum L (2011) Flame retardants in furniture foam: benefits and risks. Fire Saf Sci 10:265–278CrossRefGoogle Scholar
  4. 4.
    Grand AF, Wilkie CA (2000) Fire retardancy of polymeric materials. CRC Press, Boca RatonGoogle Scholar
  5. 5.
    Watanabe I, S-i Sakai (2003) Environmental release and behavior of brominated flame retardants. Environ Int 29:665–682CrossRefGoogle Scholar
  6. 6.
    Renner R (2004) Government Watch: EPA won’t regulate dioxin in sewage sludge. Environ Sci Technol 38:14–15Google Scholar
  7. 7.
    Wolska A, Goździkiewicz M, Ryszkowska J (2012) Thermal and mechanical behaviour of flexible polyurethane foams modified with graphite and phosphorous fillers. J Mater Sci 47:5627–5634. doi: 10.1007/s10853-012-6433-z CrossRefGoogle Scholar
  8. 8.
    Gavgani J, Adelnia H, Gudarzi M (2014) Intumescent flame retardant polyurethane/reduced graphene oxide composites with improved mechanical, thermal, and barrier properties. J Mater Sci 49:243–254. doi: 10.1007/s10853-013-7698-6 CrossRefGoogle Scholar
  9. 9.
    Cain AA, Nolen CR, Li Y-C, Davis R, Grunlan JC (2013) Phosphorous-filled nanobrick wall multilayer thin film eliminates polyurethane melt dripping and reduces heat release associated with fire. Polym Degrad Stab 98:2645–2652CrossRefGoogle Scholar
  10. 10.
    Kim YS, Davis R (2014) Multi-walled carbon nanotube layer-by-layer coatings with a trilayer structure to reduce foam flammability. Thin Solid Films 550:184–189CrossRefGoogle Scholar
  11. 11.
    Kim YS, Li Y-C, Pitts WM, Werrel M, Davis RD (2014) Rapid growing clay coatings to reduce the fire threat of furniture. ACS Appl Mater Interfaces 6:2146–2152CrossRefGoogle Scholar
  12. 12.
    Laufer G, Kirkland C, Cain AA, Grunlan JC (2012) Clay-chitosan nanobrick walls: completely renewable gas barrier and flame-retardant nanocoatings. ACS Appl Mater Interfaces 4:1643–1649CrossRefGoogle Scholar
  13. 13.
    Laufer G, Kirkland C, Morgan AB, Grunlan JC (2013) Exceptionally flame retardant sulfur-based multilayer nanocoating for polyurethane prepared from aqueous polyelectrolyte solutions. Acs Macro Lett 2:361–365CrossRefGoogle Scholar
  14. 14.
    Patra D, Vangal P, Cain AA, Cho C, Regev O, Grunlan JC (2014) Inorganic nanoparticle thin film that suppresses flammability of polyurethane with only a single electrostatically-assembled bilayer. ACS Appl Mater Interfaces 6:16903–16908CrossRefGoogle Scholar
  15. 15.
    Carosio F, Di Blasio A, Cuttica F, Alongi J, Malucelli G (2014) Self-assembled hybrid nanoarchitectures deposited on poly(urethane) foams capable of chemically adapting to extreme heat. Rsc Advances 4:16674–16680CrossRefGoogle Scholar
  16. 16.
    Thirumal M, Khastgir D, Nando GB, Naik YP, Singha NK (2010) Halogen-free flame retardant PUF: effect of melamine compounds on mechanical, thermal and flame retardant properties. Polym Degrad Stab 95:1138–1145CrossRefGoogle Scholar
  17. 17.
    Holder KM, Huff ME, Cosio MN, Grunlan JC (2015) Intumescing multilayer thin film deposited on clay-based nanobrick wall to produce self-extinguishing flame retardant polyurethane. J Mater Sci 50:2451–2458. doi: 10.1007/s10853-014-8800-4 CrossRefGoogle Scholar
  18. 18.
    Carosio F, Di Blasio A, Alongi J, Malucelli G (2013) Green DNA-based flame retardant coatings assembled through Layer by Layer. Polymer 54:5148–5153CrossRefGoogle Scholar
  19. 19.
    Guin T, Krecker M, Milhorn A, Grunlan JC (2014) Maintaining hand and improving fire resistance of cotton fabric through ultrasonication rinsing of multilayer nanocoating. Cellulose 21:3023–3030CrossRefGoogle Scholar
  20. 20.
    Huang G, Yang J, Gao J, Wang X (2012) Thin Films of Intumescent Flame Retardant-Polyacrylamide and Exfoliated Graphene Oxide Fabricated via Layer-by-Layer Assembly for Improving Flame Retardant Properties of Cotton Fabric. Ind Eng Chem Res 51:12355–12366Google Scholar
  21. 21.
    Laufer G, Kirkland C, Morgan AB, Grunlan JC (2012) intumescent multilayer nanocoating, made with renewable polyelectrolytes, for flame-retardant cotton. Biomacromolecules 13:2843–2848CrossRefGoogle Scholar
  22. 22.
    Li Y-C, Mannen S, Morgan AB, Chang S, Yang Y-H, Condon B, Grunlan JC (2011) Intumescent all-polymer multilayer nanocoating capable of extinguishing flame on fabric. Adv Mater 23:3926–3931CrossRefGoogle Scholar
  23. 23.
    Alongi J, Carosio F, Malucelli G (2012) Layer by layer complex architectures based on ammonium polyphosphate, chitosan and silica on polyester-cotton blends: flammability and combustion behaviour. Cellulose 19:1041–1050CrossRefGoogle Scholar
  24. 24.
    Dubas ST, Kumlangdudsana P, Potiyaraj P (2006) Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloids and Surfaces a-Physicochemical and Engineering Aspects 289:105–109CrossRefGoogle Scholar
  25. 25.
    Apaydin K, Laachachi A, Ball V, Jimenez M, Bourbigot S, Toniazzo V, Ruch D (2013) Polyallylamine-montmorillonite as super flame retardant coating assemblies by layer-by layer deposition on polyamide. Polym Degrad Stab 98:627–634CrossRefGoogle Scholar
  26. 26.
    Apaydin K, Laachachi A, Ball V, Jimenez M, Bourbigot S, Toniazzo V, Ruch D (2014) Intumescent coating of (polyallylamine-polyphosphates) deposited on polyamide fabrics via layer-by-layer technique. Polym Degrad Stab 106:158–164CrossRefGoogle Scholar
  27. 27.
    Carosio F, Di Blasio A, Cuttica F, Alongi J, Frache A, Malucelli G (2013) Flame retardancy of polyester fabrics treated by spray-assisted layer-by-layer silica architectures. Ind Eng Chem Res 52:9544–9550CrossRefGoogle Scholar
  28. 28.
    Decher G, Schlenoff JB (2012) Multilayer thin films: sequential assembly of nanocomposite materials, 2nd edn. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  29. 29.
    Hammond PT (2004) Form and function in multilayer assembly: new applications at the nanoscale. Adv Mater 16:1271–1293CrossRefGoogle Scholar
  30. 30.
    Ai H, Gao J (2004) Size-controlled polyelectrolyte nanocapsules via layer-by-layer self-assembly. J Mater Sci 39:1429–1432. doi: 10.1023/B:JMSC.0000013910.63194.db CrossRefGoogle Scholar
  31. 31.
    Aulin C, Karabulut E, Amy T, Wagberg L, Lindstrom T (2013) Transparent nanocellulosic multilayer thin films on polylactic acid with tunable gas barrier properties. Acs Applied Materials & Interfaces 5:7352–7359CrossRefGoogle Scholar
  32. 32.
    Lichter JA, Van Vliet KJ, Rubner MF (2009) Design of antibacterial surfaces and interfaces: polyelectrolyte multilayers as a multifunctional platform. Macromolecules 42:8573–8586CrossRefGoogle Scholar
  33. 33.
    Yang Y-H, Haile M, Park YT, Malek FA, Grunlan JC (2011) Super gas barrier of all-polymer multilayer thin films. Macromolecules 44:1450–1459CrossRefGoogle Scholar
  34. 34.
    Hao W, Pan F, Wang T (2005) Photocatalytic activity TiO2 granular films prepared by layer-by-layer self-assembly method. J Mater Sci 40:1251–1253. doi: 10.1007/s10853-005-6945-x CrossRefGoogle Scholar
  35. 35.
    Carosio F, Laufer G, Alongi J, Camino G, Grunlan JC (2011) Layer-by-layer assembly of silica-based flame retardant thin film on PET fabric. Polym Degrad Stab 96:745–750CrossRefGoogle Scholar
  36. 36.
    Chapel JP, Berret JF (2012) Versatile electrostatic assembly of nanoparticles and polyelectrolytes: coating, clustering and layer-by-layer processes. Curr Opin Colloid Interface Sci 17:97–105CrossRefGoogle Scholar
  37. 37.
    Srivastava S, Kotov NA (2008) Composite layer-by-layer (LBL) assembly with inorganic nanoparticles and nanowires. Acc Chem Res 41:1831–1841CrossRefGoogle Scholar
  38. 38.
    Xu XH, Ren GL, Cheng J, Liu Q, Li DG, Chen Q (2006) Layer by layer self-assembly immobilization of glucose oxidase onto chitosan-graft-polyaniline polymers. J Mater Sci 41:3147–3149. doi: 10.1007/s10853-006-6412-3 CrossRefGoogle Scholar
  39. 39.
    Lvov Y, Ariga K, Ichinose I, Kunitake T (1996) Molecular film assembly via layer-by-layer adsorption of oppositely charged macromolecules (linear polymer, protein and clay) and concanavalin A and glycogen. Thin Solid Films 284:797–801CrossRefGoogle Scholar
  40. 40.
    Hammond PT (2012) Building biomedical materials layer-by-layer. Mater Today 15:196–206CrossRefGoogle Scholar
  41. 41.
    Lutkenhaus JL, Hammond PT (2007) Electrochemically enabled polyelectrolyte multilayer devices: from fuel cells to sensors. Soft Matter 3:804–816CrossRefGoogle Scholar
  42. 42.
    Ariga K, Hill JP, Ji Q (2007) Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Physical Chemistry Chemical Physics 9:2319–2340CrossRefGoogle Scholar
  43. 43.
    Li Y-C, Kim YS, Shields J, Davis R (2013) Controlling polyurethane foam flammability and mechanical behaviour by tailoring the composition of clay-based multilayer nanocoatings. Journal of Materials Chemistry A 1:12987–12997CrossRefGoogle Scholar
  44. 44.
    Zhu J, Morgan AB, Lamelas FJ, Wilkie CA (2001) Fire properties of polystyrene-clay nanocomposites. Chem Mater 13:3774–3780CrossRefGoogle Scholar
  45. 45.
    Laachachi A, Ferriol M, Cochez M, Lopez Cuesta JM, Ruch D (2009) A comparison of the role of boehmite (AlOOH) and alumina (Al2O3) in the thermal stability and flammability of poly(methyl methacrylate). Polym Degrad Stab 94:1373–1378CrossRefGoogle Scholar
  46. 46.
    Kogel JE (2006) Industrial minerals and rocks: commodities, markets, and uses. Society for Mining, LittletonGoogle Scholar
  47. 47.
    Lvov YM, Pattekari P, Zhang X, Torchilin V (2011) Converting poorly soluble materials into stable aqueous nanocolloids. Langmuir 27:1212–1217CrossRefGoogle Scholar
  48. 48.
    Kim D, Tzeng P, Barnett KJ, Yang Y-H, Wilhite BA, Grunlan JC (2014) Highly size-selective ionically crosslinked multilayer polymer films for light gas separation. Adv Mater 26:746–751CrossRefGoogle Scholar
  49. 49.
    Kashiwagi T, Shields JR, Harris RH, Davis RD (2003) Flame-retardant mechanism of silica: effects of resin molecular weight. J Appl Polym Sci 87:1541–1553CrossRefGoogle Scholar
  50. 50.
    Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta JM, Dubois P (2009) New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Materials Science & Engineering R-Reports 63:100–125CrossRefGoogle Scholar
  51. 51.
    Jiao L, Xiao H, Wang Q, Sun J (2013) Thermal degradation characteristics of rigid polyurethane foam and the volatile products analysis with TG-FTIR-MS. Polym Degrad Stab 98:2687–2696CrossRefGoogle Scholar
  52. 52.
    Morgan AB, Liu W (2011) Flammability of thermoplastic carbon nanofiber nanocomposites. Fire Mater 35:43–60CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Merid Haile
    • 1
  • Sandra Fomete
    • 2
  • Ilse D. Lopez
    • 2
  • Jaime C. Grunlan
    • 1
    • 2
    • 3
  1. 1.Department of Material Science and EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Department of Mechanical EngineeringTexas A&M UniversityCollege StationUSA
  3. 3.Department of ChemistryTexas A&M UniversityCollege StationUSA

Personalised recommendations