Journal of Materials Science

, Volume 50, Issue 20, pp 6779–6785 | Cite as

Hydrothermal Synthesis of Novel K2YbF5:Er3+/Y3+ Microcrystals with Tunable Red–Green Upconversion Luminescence

  • Mingye Ding
  • Daqin Chen
  • Zhongyi Wan
  • Yang Zhou
  • Jiasong Zhong
  • Junhua Xi
  • Zhenguo Ji
Original Paper


Well-formed and high-quality K2YbF5 microrods have been successfully synthesized by a simple and mild hydrothermal route for the first time. X-ray diffraction, scanning electron microscopy, energy dispersive spectrometer, and photoluminescence spectra were adopted to characterize the as-prepared samples. It is found that the as-obtained samples belong to orthorhombic system and exhibit spindle-like microrods morphology with length of about 7–10 μm and diameter of about 3–6 μm. The upconversion (UC) luminescence properties of K2YbF5:x %Y3+, 2 %Er3+ (x = 10, 30, 50, 70, 90) were systematically investigated. Under 980 nm laser excitation, the emission intensities and the corresponding output colors of K2YbF5:Y3+/Er3+ could be precisely manipulated by adjusting the Y3+ doping concentration. This study provides a great opportunity for exploring other complex fluorides with improved UC luminescence properties.


Green Emission Energy Dispersive Spectrometer NaYF4 YbCl3 ErCl3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This project has been financially supported by Zhejiang Province Natural Science Foundation of China (LQ15E020004, LR15E020001 and LQ14020006), the Scientific Research Foundation of Hangzhou Dianzi University (KYS205614041), the National Natural Science Foundation of China (61372025 and 21271170).


  1. 1.
    Li Y, Zhang J, Zhang X, Luo Y, Ren X, Zhao H, Wang X, Sun L, Yan C (2009) Near-infrared to visible upconversion in Er3+ and Yb3+ Codoped Lu2O3 nanocrystals: enhanced red color upconversion and three-photon process in green color upconversion. J Phys Chem C 113:4413–4418CrossRefGoogle Scholar
  2. 2.
    Chen G, Liu H, Liang H, Somesfalean G, Zhang Z (2008) Upconversion emission enhancement in Yb3+/Er3+-Codoped Y2O3 nanocrystals by tridoping with Li+ ions. J Phys Chem C 112:12030–12036CrossRefGoogle Scholar
  3. 3.
    He F, Yang P, Wang D, Li C, Niu N, Gai S, Zhang M (2011) Preparation and up-conversion luminescence of hollow La2O3: Ln (Ln = Yb/Er, Yb/Ho) microspheres. Langmuir 27:5616–5623CrossRefGoogle Scholar
  4. 4.
    Yi G, Peng Y, Gao Z (2011) Strong red-emitting near-infrared-to-visible upconversion fluorescent nanoparticles. Chem Mater 23:2729–2734CrossRefGoogle Scholar
  5. 5.
    Ding M, Lu C, Cao L, Ni Y, Xu Z (2013) Synthesis and upconversion luminescence in highly crystalline YOF:Yb3+/Er3+ and Yb3+/Tm3+ microboxes. Opt Mater 35:1283–1287CrossRefGoogle Scholar
  6. 6.
    Tao L, Xu W, Zhu Y, Xu L, Zhu H, Liu Y, Xu S, Zhou P, Song H (2014) Modulation of upconversion luminescence in Er3+, Yb3+-codoped lanthanide oxyfluoride (YOF, GdOF, LaOF) inverse opals. J. Mater. Chem. C 2:4186–4195CrossRefGoogle Scholar
  7. 7.
    Sivakumar S, Diamente PR, van Veggel FCJM (2006) Silica-coated Ln3+-Doped LaF3 nanoparticles as robust down- and upconverting biolabels. Chem Eur J 12:5878–5884CrossRefGoogle Scholar
  8. 8.
    Wang G, Qin W, Zhang J, Zhang J, Wangyan, Cao C, Wang L, Wei G, Zhu P, Kim R (2008) Synthesis, growth mechanism, and tunable upconversion luminescence of Yb3+/Tm3+-codoped YF3 nanobundles. J Phys Chem C 112:12161–12167CrossRefGoogle Scholar
  9. 9.
    Huang X (2015) Dual-model upconversion luminescence from NaGdF4:Nd/Yb/Tm@NaGdF4:Eu/Tb core–shell nanoparticles. J Alloy Compd 628:240–244CrossRefGoogle Scholar
  10. 10.
    Lee S, Teshima K, Shikine N, Oishi S (2009) Fabrication of upconverting YbPO4: Er crystals by naturally-derived gel growth and subsequent thermal treatment. Cryst Growth Des 9:4078–4083CrossRefGoogle Scholar
  11. 11.
    Heer S, Lehmann O, Haase M, Güdel H-U (2003) Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution. Angew Chem Int Ed 42:3179–3182CrossRefGoogle Scholar
  12. 12.
    Ren W, Tian G, Zhou L, Yin W, Yan L, Jin S, Zu Y, Li S, Gu Z, Zhao Y (2012) Lanthanide ion-doped GdPO4 nanorods with dual-modal bio-optical and magnetic resonance imaging properties. Nanoscale 4:3754–3760CrossRefGoogle Scholar
  13. 13.
    Yang Y, Mi C, Jiao F, Su X, Li X, Liu L, Zhang J, Yu F, Liu Y, Mai Y (2014) A novel multifunctional upconversion phosphor: Yb3+/Er3+ codoped La2S3. J Am Ceram Soc 97:1769–1775CrossRefGoogle Scholar
  14. 14.
    Heine F, Heumann E, Danger T, Schweizer T, Huber G, Chai B (1994) Green upconversion continuous wave Er3+:LiYF4 laser at room temperature. Appl Phys Lett 65:383–384CrossRefGoogle Scholar
  15. 15.
    Wang F, Deng R, Wang J, Wang Q, Han Y, Zhu H, Chen X, Liu X (2011) Tuning upconversion through energy migration in core–shell nanoparticles. Nat Mater 10:968–973CrossRefGoogle Scholar
  16. 16.
    de Wild J, Rath JK, Meijerink A, van Sark WGJHM, Schropp REI (2010) Enhanced near-infrared response of a-Si: H solar cells with β-NaYF4:Yb3 + (18%), Er3 + (2%) upconversion phosphors. Sol. Energ. Mat. Sol. Cell 94:2395–2398CrossRefGoogle Scholar
  17. 17.
    Cheng YY, Fuckel B, MacQueen RW, Khoury T, Clady RGCR, Schulze TF, Ekins-Daukes NJ, Crossley MJ, Stannowski B, Lips K, Schmidt TW (2012) Improving the light-harvesting of amorphous silicon solar cells with photochemical upconversion. Energ. Environ. Sci. 5:6953–6959CrossRefGoogle Scholar
  18. 18.
    Qin W, Zhang D, Zhao D, Wang L, Zheng K (2010) Near-infrared photocatalysis based on YF3: Yb3+, Tm3+/TiO2 core/shell nanoparticles. Chem Commun 46:2304–2306CrossRefGoogle Scholar
  19. 19.
    Wang W, Ding M, Lu C, Ni Y, Xu Z (2014) A study on upconversion UV–vis–NIR responsive photocatalytic activity and mechanisms of hexagonal phase NaYF4:Yb3+, Tm3+@TiO2 core–shell structured photocatalyst. Appl. Catal. B: Environ. 144:379–385CrossRefGoogle Scholar
  20. 20.
    Liu Y, Ai K, Lu L (2011) Designing lanthanide-doped nanocrystals with both up-and down-conversion luminescence for anti-counterfeiting. Nanoscale 3:4804–4810CrossRefGoogle Scholar
  21. 21.
    Fan W, Shen B, Bu W, Zheng X, He Q, Cui Z, Zhang S, Shi J (2015) Design of an intelligent sub-50 nm nuclear-targeting nanotheranostic system for imaging guided intranuclear radiosensitization. Chem. Sci. 6:1747–1753CrossRefGoogle Scholar
  22. 22.
    Zhao L, Peng J, Huang Q, Li C, Chen M, Sun Y, Lin Q, Zhu L, Li F (2014) Near-infrared photoregulated drug release in living tumor tissue via yolk-shell upconversion nanocages. Adv Funct Mater 24:363–371CrossRefGoogle Scholar
  23. 23.
    Yang D, Kang X, Ma P, Dai Y, Hou Z, Cheng Z, Li C, Lin J (2013) Hollow structured upconversion luminescent NaYF4: Yb3+, Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery. Biomaterials 34:1601–1612CrossRefGoogle Scholar
  24. 24.
    Li C, Yang J, Quan Z, Yang P, Kong D, Lin J (2007) Different microstructures of β-NaYF4 fabricated by hydrothermal process: effects of pH values and fluoride sources. Chem Mater 19:4933–4942CrossRefGoogle Scholar
  25. 25.
    Yi G, Lu H, Zhao S, Ge Y, Yang W, Chen D, Guo L-H (2004) Synthesis, Characterization, and Biological Application of Size-Controlled Nanocrystalline NaYF4:Yb, Er Infrared-to-Visible Up-Conversion Phosphors. Nano Lett 4:2191–2196CrossRefGoogle Scholar
  26. 26.
    Ding M, Lu C, Cao L, Ni Y (2013) Controllable synthesis, formation mechanism and upconversion luminescence of β-NaYF4:Yb3+/Er3+ microcrystals by hydrothermal process. CrystEngComm 15:8366–8373CrossRefGoogle Scholar
  27. 27.
    Li C, Quan Z, Yang P, Yang J, Lian H, Lin J (2008) Shape controllable synthesis and upconversion properties of NaYbF4/NaYbF4:Er3+ and YbF3/YbF3:Er3+ microstructures. J Mater Chem 18:1353–1361CrossRefGoogle Scholar
  28. 28.
    Mahalingam V, Vetrone F, Naccache R, Speghini A, Capobianco JA (2009) Colloidal Tm3+/Yb3+-Doped LiYF4 nanocrystals: multiple luminescence spanning the UV to NIR regions via low-energy excitation. Adv Mater 21:4025–4028CrossRefGoogle Scholar
  29. 29.
    Ding M, Lu C, Cao L, Huang W, Ni Y, Xu Z (2013) Molten salt synthesis of tetragonal LiYF4:Yb3+/Ln3+ (Ln = Er, Tm, Ho) microcrystals with multicolor upconversion luminescence. CrystEngComm 15:6015–6021CrossRefGoogle Scholar
  30. 30.
    Zhang X, Wang M, Ding J, Gao D, Shi Y, Song X (2012) The novel upconversion properties of LiYbF4: Er microcrystals compared to the Na counterpart. CrystEngComm 14:8357–8360CrossRefGoogle Scholar
  31. 31.
    Schäfer H, Ptacek P, Zerzouf O, Haase M (2008) Synthesis and optical properties of KYF4/Yb, Er nanocrystals, and their surface modification with undoped KYF4. Adv Funct Mater 18:2913–2918CrossRefGoogle Scholar
  32. 32.
    Grzechnik A, Khaidukov N, Friese K (2013) Crystal structures and stability of trigonal KLnF4 fluorides (Ln = Y, Ho, Er, Tm, Yb). Dalton Trans 42:441–447CrossRefGoogle Scholar
  33. 33.
    Wang J, Deng R, MacDonald MA, Chen B, Yuan J, Wang F, Chi D, Andy Hor TS, Zhang P, Liu G, Han Y, Liu X (2014) Enhancing multiphoton upconversion through energy clustering at sublattice level. Nat Mater 13:157–162CrossRefGoogle Scholar
  34. 34.
    Khaidukov NM, Zhang X, Jouart JP (1997) Photoluminescence of Eu3+ in KYF4 and KLuF4. J Lumin 72:213–214CrossRefGoogle Scholar
  35. 35.
    Li C, Xu Z, Yang D, Cheng Z, Hou Z, Ma P, Lian H, Lin J (2012) Well-dispersed KRE3F10 (RE = Sm–Lu, Y) nanocrystals: solvothermal synthesis and luminescence properties. CrystEngComm 14:670–678CrossRefGoogle Scholar
  36. 36.
    Pang T, Cao W, Xing M, Luo X, Yang X (2011) Design and achieving mechanism of upconversion white emission based on Yb3+/Tm3+/Er3+ tri-doped KY3F10 nanocrystals. Opt Mater 33:485–489CrossRefGoogle Scholar
  37. 37.
    Le Fur Y, Aléonard S, Gorius MF, Roux MT (1980) Structure cristalline de la phase β-KYb2F7. J Solid State Chem 35:29–33CrossRefGoogle Scholar
  38. 38.
    Méndez-Ramos J, Acosta-Mora P, Ruiz-Morales JC, Khaidukov NM (2013) Role of the Yb3+ concentration in the high efficient UV-blue up-conversion emission from hydrothermally grown Yb3+/Er3+-doped K2YF5 crystals. J Alloy Compd 575:263–267CrossRefGoogle Scholar
  39. 39.
    Hao J, Zhang Y, Wei X (2011) Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3:Yb/Er thin films. Angew Chem Int Ed 50:6876–6880CrossRefGoogle Scholar
  40. 40.
    Zhang X, Yang P, Li C, Wang D, Xu J, Gai S, Lin J (2011) Facile and mass production synthesis of β-NaYF4:Yb3+, Er3+/Tm3+ 1D microstructures with multicolor up-conversion luminescence. Chem Commun 47:12143–12145CrossRefGoogle Scholar
  41. 41.
    Chen D, Yu Y, Wang Y, Huang P, Weng F (2009) Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+:TbF3 nanocrystals embedded glass ceramics. J Phys Chem C 113:6406–6410CrossRefGoogle Scholar
  42. 42.
    Dong H, Sun L, Yan C (2013) Basic understanding of the lanthanide related upconversion emissions. Nanoscale 5:5703–5714CrossRefGoogle Scholar
  43. 43.
    Auzel F (2004) Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev 104:139–174CrossRefGoogle Scholar
  44. 44.
    Huang S, Xu J, Zhang Z, Zhang X, Wang L, Gai S, He F, Niu N, Zhang M, Yang P (2012) Rapid, morphologically controllable, large-scale synthesis of uniform Y(OH)3 and tunable luminescent properties of Y2O3:Yb3+/Ln3+ (Ln = Er, Tm and Ho). J Mater Chem 22:16136–16144CrossRefGoogle Scholar
  45. 45.
    Niu N, Yang P, He F, Zhang X, Gai S, Li C, Lin J (2012) Tunable multicolor and bright white emission of one-dimensional NaLuF 4: Yb3+, Ln3+ (Ln = Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures. J Mater Chem 22:10889–10899CrossRefGoogle Scholar
  46. 46.
    Zeng S, Ren G, Yang Q (2010) Fabrication, formation mechanism and optical properties of novel single-crystal Er3+ doped NaYbF4 micro-tubes. J Mater Chem 20:2152–2156CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Mingye Ding
    • 1
  • Daqin Chen
    • 1
  • Zhongyi Wan
    • 1
  • Yang Zhou
    • 1
  • Jiasong Zhong
    • 1
  • Junhua Xi
    • 1
  • Zhenguo Ji
    • 1
  1. 1.College of Materials & Environmental EngineeringHangzhou Dianzi UniversityHangzhouPeople’s Republic of China

Personalised recommendations