Journal of Materials Science

, Volume 50, Issue 18, pp 6032–6040 | Cite as

Enhanced solubilization of large-diameter single-walled carbon nanotubes with amino-functionalized dipyrene nanotweezers

  • Yuda Li
  • Xunchang Wang
  • Chang Cheng
  • Zichao Xiong
  • Ge Shu
  • Feng Wang
Original Paper


Pyrene-based nanotweezers 1 consisting of two pyrenes and amino-substituted carbazole in between have been successfully synthesized via Suzuki–Miyaura coupling reaction. The supramolecular complex formation of nanotweezers 1 with single-walled carbon nanotubes (SWNTs) was studied, and it was found that nanotweezers 1 exhibited much higher the SWNTs extraction ability as compared to the analogous dipyrene nanotweezers 2 and 3 with soluble alkyl-substituents. This enhanced extraction ability of 1 can be attributed to the formation of more stable SWNT complexes in methanol. On the basis of photoluminescence excitation and UV–Vis-NIR absorption of 76-CoMoCAT SWNTs before and after the extraction, nanotweezers 1 were found to show high selectivity towards (8,4)-, (7,6)-, (9,4)-, and (8,6)-SWNTs with diameter ranging from 0.84 to 0.97 nm.


Radial Breathing Mode Extraction Ability Typical Atomic Force Microscopy Image Miyaura Coupling Reaction Pyrene Moiety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Dr. Feng Wang wishes to thank Prof. Naoki Komatsu at Shiga University of Medical Science for the long-time support and encouragement. This work was financially supported by Natural Science Foundation of China (Grant No. 51103111), Education Ministry of China (Program for NCET-12-0714), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the Open Fund of the State Key Laboratory of Luminescent Materials and Devices (2014-skllmd-11), and Graduate Innovative Fund of Wuhan Institute of Technology (Grant No. CX2013009).

Supplementary material

10853_2015_9150_MOESM1_ESM.doc (546 kb)
Supplementary material 1 (DOC 547 kb)


  1. 1.
    Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes-the route toward applications. Science 297:787–792CrossRefGoogle Scholar
  2. 2.
    Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y (1999) Optical properties of single-wall carbon nanotubes. Synth Met 103:2555–2558CrossRefGoogle Scholar
  3. 3.
    Tans SJ, Devoret MH, Dai H, Thess A, Smalley RE, Georliga L, Dekker C (1997) Individual single-wall carbon nanotubes as quantum wires. Nature 386:474–477CrossRefGoogle Scholar
  4. 4.
    Arnold MS, Green AA, Hulvat JF, Stupp SI, Hersam MC (2006) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol 1:60–65CrossRefGoogle Scholar
  5. 5.
    Green AA, Hersam MC (2008) Colored semitransparent conductive coatings consisting of monodisperse metallic single-walled carbon nanotubes. Nano Lett 8:1417–1422CrossRefGoogle Scholar
  6. 6.
    Si R, Wang H, Wei L, Chen Y, Wang Z, Wei J (2012) Length dependent performances of sodium deoxycholate dispersed single walled carbon nanotube thin-film transistors. J Mater Res 28:1004–1011CrossRefGoogle Scholar
  7. 7.
    Zhao P, Einarsson E, Xiang R, Murakami Y, Maruyama S (2010) Controllable expansion of single-walled carbon nanotube dispersions using density gradient ultracentrifugation. J Phys Chem C 114:4831–4834CrossRefGoogle Scholar
  8. 8.
    Hároz EH, Rice WD, Lu BY, Ghosh S, Hauge RH, Weisman RB, Doorn SK, Kono J (2010) Enrichment of armchair carbon nanotubes via density gradient ultracentrifugation: raman spectroscopy evidence. ACS Nano 4:1955–1962CrossRefGoogle Scholar
  9. 9.
    Krupke R, Hennrich F, Hv Löhneysen, Kappes MM (2003) Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301:344–347CrossRefGoogle Scholar
  10. 10.
    Hennrich F, Krupke R, Kappes MM, Löhneysen HV (2005) Frequency dependence of the dielectrophoretic separation of single-walled carbon nanotubes. J Nanosci Nanotechnol 5:1166–1171CrossRefGoogle Scholar
  11. 11.
    Peng H, Alvarez NT, Kittrell C, Hauge RH, Schmidt HK (2006) Dielectrophoresis field flow fractionation of single-walled carbon nanotubes. J Am Chem Soc 128:8396–8397CrossRefGoogle Scholar
  12. 12.
    Tu X, Manohar S, Jagota A, Zheng M (2009) DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460:250–253CrossRefGoogle Scholar
  13. 13.
    Liu H, Nishide D, Tanaka T, Kataura H (2011) Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat Commun 2:309–316CrossRefGoogle Scholar
  14. 14.
    Nish A, Hwang J-Y, Doig J, Nicholas RJ (2007) Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nat Nanotechnol 2:640–646CrossRefGoogle Scholar
  15. 15.
    Akazaki K, Toshimitsu F, Ozawa H, Fujigaya T, Nakashima N (2012) Recognition and one-pot extraction of right-and left-handed semiconducting single-walled carbon nanotube enantiomers using fluorene-binaphthol chiral copolymers. J Am Chem Soc 134:12700–12707CrossRefGoogle Scholar
  16. 16.
    Berton N, Lemasson F, Poschlad A, Meded V, Tristram F, Wenzel W, Hennrich F, Kappes MM, Mayor M (2014) Selective dispersion of large-diameter semiconducting single-walled carbon nanotubes with pyridine-containing copolymers. Small 10:360–367CrossRefGoogle Scholar
  17. 17.
    Gerstel P, Klumpp S, Hennrich F, Poschlad A, Meded V, Blasco E, Wenzel W, Kappes MM, Barner-Kowollik C (2013) Highly selective dispersion of single-walled carbon nanotubes via polymer wrapping: a combinatorial study via modular conjugation. ACS Macro Lett 3:10–15CrossRefGoogle Scholar
  18. 18.
    Berton N, Lemasson F, Tittmann J, Stürzl N, Hennrich F, Kappes MM, Mayor M (2011) Copolymer-controlled diameter-selective dispersion of semiconducting single-walled carbon nanotubes. Chem Mater 23:2237–2249CrossRefGoogle Scholar
  19. 19.
    Jakubka F, Schießl SP, Martin S, Englert JM, Hauke F, Hirsch A, Zaumseil J (2012) Effect of polymer molecular weight and solution parameters on selective dispersion of single-walled carbon nanotubes. ACS Macro Lett 1:815–819CrossRefGoogle Scholar
  20. 20.
    Si R, Wei L, Wang H, Su D, Mushrif SH, Chen Y (2014) Extraction of (9, 8) single-walled carbon nanotubes by fluorene-based polymers. Chem Asian J 9:868–877CrossRefGoogle Scholar
  21. 21.
    Yoon S-M, Kim SJ, Shin H-J, Benayad A, Choi SJ, Kim KK, Kim SM, Park YJ, Kim G, Choi J-Y (2008) Selective oxidation on metallic carbon nanotubes by halogen oxoanions. J Am Chem Soc 130:2610–2616CrossRefGoogle Scholar
  22. 22.
    Mahjouri-Samani M, Zhou Y, Xiong W, Gao Y, Mitchell M, Lu Y (2009) Laser induced selective removal of metallic carbon nanotubes. Nanotechnology 20:495202CrossRefGoogle Scholar
  23. 23.
    Chen Y, Wei L, Wang B, Lim S, Ciuparu D, Zheng M, Chen J, Zoican C, Yang Y, Haller GL (2007) Low-defect, purified, narrowly (n, m)-dispersed single-walled carbon nanotubes grown from cobalt-incorporated MCM-41. ACS Nano 1:327–336CrossRefGoogle Scholar
  24. 24.
    Orellana W, Correa JD (2015) Noncovalent functionalization of carbon nanotubes and graphene with tetraphenylporphyrins: stability and optical properties from ab initio calculations. J Mater Sci 50:898–905. doi: 10.1007/s10853-014-8650-0 CrossRefGoogle Scholar
  25. 25.
    Peng X, Komatsu N, Bhattacharya S, Shimawaki T, Aonuma S, Kimura T, Osuka A (2007) Optically active single-walled carbon nanotubes. Nat Nanotechnol 2:361–365CrossRefGoogle Scholar
  26. 26.
    Peng X, Komatsu N, Kimura T, Osuka A (2007) Improved optical enrichment of SWNTs through extraction with chiral nanotweezers of 2,6-pyridylene-bridged diporphyrins. J Am Chem Soc 129:15947–15953CrossRefGoogle Scholar
  27. 27.
    Peng X, Komatsu N, Kimura T, Osuka A (2008) Simultaneous enrichments of optical purity and (n, m) abundance of SWNTs through extraction with 3,6-carbazolylene-bridged chiral diporphyrin nanotweezers. ACS Nano 2:2045–2050CrossRefGoogle Scholar
  28. 28.
    Wang F, Matsuda K, Rahman AM, Peng X, Kimura T, Komatsu N (2010) Simultaneous discrimination of handedness and diameter of single-walled carbon nanotubes (swnts) with chiral diporphyrin nanotweezers leading to enrichment of a single enantiomer of (6, 5)-swnts. J Am Chem Soc 132:10876–10881CrossRefGoogle Scholar
  29. 29.
    Liu G, Wang F, Chaunchaiyakul S, Saito Y, Bauri AK, Kimura T, Kuwahara Y, Komatsu N (2013) Simultaneous discrimination of diameter, handedness, and metallicity of single-walled carbon nanotubes with chiral diporphyrin nanocalipers. J Am Chem Soc 135:4805–4814CrossRefGoogle Scholar
  30. 30.
    Wang C, Xu W, Zhao J, Lin J, Chen Z, Cui Z (2014) Selective silencing of the electrical properties of metallic single-walled carbon nanotubes by 4-nitrobenzenediazonium tetrafluoroborate. J Mater Sci 49:2054–2062. doi: 10.1007/s10853-013-7895-3 CrossRefGoogle Scholar
  31. 31.
    Liu C, Zhang H (2010) Chemical approaches towards single-species single-walled carbon nanotubes. Nanoscale 2:1901–1918CrossRefGoogle Scholar
  32. 32.
    Liu C, Liu Y, Zhang Y, Wei R, Zhang H (2009) Tandem extraction strategy for separation of metallic and semiconducting SWCNTs using condensed benzenoid molecules: effects of molecular morphology and solvent. Phys Chem Chem Phys 11:7257–7267CrossRefGoogle Scholar
  33. 33.
    Li Y, Rahman AM, Liu G, Xiong Z, Koezuka K, Xu Z, Komatsu N, Wang F (2013) Enrichment of large-diameter single-walled carbon nanotubes (swnts) with metallo-octaethylporphyrins. Materials 6:3064–3078CrossRefGoogle Scholar
  34. 34.
    Wang F, Matsuda K, Rahman AM, Kimura T, Komatsu N (2011) Improved selectivity in discriminating handedness and diameter of single-walled carbon nanotubes with N-substituted 3,6-carbazolylene-bridged chiral diporphyrin nanotweezers. Nanoscale 3:4117–4124CrossRefGoogle Scholar
  35. 35.
    Li Y, Wang X, Lv R, Wang F (2014) Non-covalent separation of optically active single-walled carbon nanotubes. Prog Chem 26:1361–1368Google Scholar
  36. 36.
    Rahman AM, Wang F, Matsuda K, Kimura T, Komatsu N (2011) Diameter-based separation of single-walled carbon nanotubes through selective extraction with dipyrene nanotweezers. Chem Sci 2:862–867CrossRefGoogle Scholar
  37. 37.
    Liu G, Rahman AM, Chaunchaiyakul S, Kimura T, Kuwahara Y, Komatsu N (2013) Bis (tert-butylpyrene) nanotweezers and nanocalipers: enhanced extraction and recognition abilities for single-walled carbon nanotubes. Chem Eur J 19:16221–16230CrossRefGoogle Scholar
  38. 38.
    Backes C, Schmidt CD, Hauke F, Hirsch A (2011) Perylene-based nanotweezers: enrichment of larger-diameter single-walled carbon nanotubes. Chem Eur J 6:438–444Google Scholar
  39. 39.
    Marquis R, Kulikiewicz K, Lebedkin S, Kappes MM, Mioskowski C, Meunier S, Wagner A (2009) Axially chiral facial amphiphiles with a dihydronaphthopentaphene structure as molecular tweezers for swnts. Chem Eur J 15:11187–11196CrossRefGoogle Scholar
  40. 40.
    Tromp R, Afzali A, Freitag M, Mitzi D, Chen Z (2008) Novel strategy for diameter-selective separation and functionalization of single-wall carbon nanotubes. Nano Lett 8:469–472CrossRefGoogle Scholar
  41. 41.
    Huang F, Wu H, Wang D, Yang W, Cao Y (2004) Novel electroluminescent conjugated polyelectrolytes based on polyfluorene. Chem Mater 16:708–716CrossRefGoogle Scholar
  42. 42.
    Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB (2002) Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298:2361–2366CrossRefGoogle Scholar
  43. 43.
    Tsyboulski DA, Rocha J-DR, Bachilo SM, Cognet L, Weisman RB (2007) Structure-dependent fluorescence efficiencies of individual single-walled carbon nanotubes. Nano Lett 7:3080–3085CrossRefGoogle Scholar
  44. 44.
    Cheng F, Zhang S, Adronov A, Echegoyen L, Diederich F (2006) Triply fused ZnII-porphyrin oligomers: synthesis, properties, and supramolecular interactions with single-walled carbon nanotubes (swnts). Chem Eur J 12:6062–6070CrossRefGoogle Scholar
  45. 45.
    Hennrich F, Krupke R, Lebedkin S, Arnold K, Fischer R, Resasco DE, Kappes MM (2005) Raman spectroscopy of individual single-walled carbon nanotubes from various sources. J Phys Chem B 109:10567–10573CrossRefGoogle Scholar
  46. 46.
    Maeda Y, Kimura S, Kanda M, Hirashima Y, Hasegawa T, Wakahara T, Lian Y, Nakahodo T, Tsuchiya T, Akasaka T, Lu J, Zhang X, Gao Z, Yu Y, Nagase S, Kazaoui S, Minami N, Shimizu T, Tokumoto H, Saito R (2005) Large-scale separation of metallic and semiconducting single-walled carbon nanotubes. J Am Chem Soc 127:10287–10290CrossRefGoogle Scholar
  47. 47.
    Furtado CA, Kim UJ, Gutierrez HR, Pan L, Dickey EC, Eklund PC (2004) Debundling and dissolution of single-walled carbon nanotubes in amide solvents. J Am Chem Soc 126:6095–6105CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yuda Li
    • 1
  • Xunchang Wang
    • 1
  • Chang Cheng
    • 1
  • Zichao Xiong
    • 1
  • Ge Shu
    • 1
  • Feng Wang
    • 1
    • 2
  1. 1.Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and PharmacyWuhan Institute of TechnologyWuhanChina
  2. 2.State Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhouChina

Personalised recommendations