Skip to main content

Advertisement

Log in

Influence of thermal treatment atmosphere on photogenerated charge separation of Pt/N–TiO2/SrTiO3 for efficient hydrogen evolution

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Solar light-responsive platinized N-doped TiO2/SrTiO3 that was thermally treated under H2 atmosphere (H–0.2Pt/N–TiO2/SrTiO3) exhibited high activity for hydrogen evolution under simulated sunlight irradiation. The hydrogen evolution rate of H–0.2Pt/N–TiO2/SrTiO3 was 2740 μmol/h/g, which was approximately 88 times higher than that of N–TiO2/SrTiO3. Results of X-ray photoelectron microscopy demonstrated that the thermal treatment atmosphere was the main factor that contributed to Pt(0) formation, and the proportion of Pt(0) increased in the following order of air < N2 < H2. Moreover, photoluminescence analysis showed that photogenerated charge separation efficiency was positively correlated with the degree of Pt(0) formation, as evidenced by the better photogenerated electron acceptance of Pt(0). The influences of Pt coating amount and photocatalyst concentration on hydrogen evolution efficiency were also investigated. The highest hydrogen evolution efficiency was attained when the Pt coating amount was 0.2 wt% and the photocatalyst concentration was controlled at 2.0 g/L. The stability and reusability experiments for hydrogen evolution and material characterization showed that the H–0.2Pt/N–TiO2/SrTiO3 with high physicochemical stability is a promising candidate material for practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Markovskaya DV, Cherepanova SV, Saraev AA, Gerasimov EY, Kozlova EA (2015) Photocatalytic hydrogen evolution from aqueous solutions of Na2S/Na2SO3 under visible light irradiation on CuS/Cd0.3Zn0.7S and Ni z Cd0.3Zn0.7S1+z . Chem Eng J 262:146–155. doi:10.1016/j.cej.2014.09.090

    Article  Google Scholar 

  2. Li Z, Yu L, Liu Y, Sun S (2014) Enhanced photovoltaic performance of solar cell based on front-side illuminated CdSe/CdS double-sensitized TiO2 nanotube arrays electrode. J Mater Sci 49(18):6392–6403. doi:10.1007/s10853-014-8366-1

    Article  Google Scholar 

  3. Mazloomi K, Gomes C (2012) Hydrogen as an energy carrier: prospects and challenges. Renew Sustain Energy Rev 16(5):3024–3033. doi:10.1016/j.rser.2012.02.028

    Article  Google Scholar 

  4. Janaun J, Ellis N (2010) Perspectives on biodiesel as a sustainable fuel. Renew Sustain Energy Rev 14(4):1312–1320. doi:10.1016/j.rser.2009.12.011

    Article  Google Scholar 

  5. Niphadkar PS, Chitale SK, Sonar SK, Deshpande SS, Joshi PN, Awate SV (2014) Synthesis, characterization and photocatalytic behavior of TiO2–SiO2 mesoporous composites in hydrogen generation from water splitting. J Mater Sci 49(18):6383–6391. doi:10.1007/s10853-014-8365-2

    Article  Google Scholar 

  6. Chaubey R, Sahu S, James OO, Maity S (2013) A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources. Renew Sustain Energy Rev 23:443–462. doi:10.1016/j.rser.2013.02.019

    Article  Google Scholar 

  7. Cao S-W, Liu X-F, Yuan Y-P, Zhang Z-Y, Liao Y-S, Fang J, Loo SCJ, Sum TC, Xue C (2014) Solar-to-fuels conversion over In2O3/g-C3N4 hybrid photocatalysts. Appl Catal B 147:940–946. doi:10.1016/j.apcatb.2013.10.029

    Article  Google Scholar 

  8. Wang Y-F, Hsieh M-C, Lee J-F, Yang C-M (2013) Nonaqueous synthesis of CoOX/TiO2 nanocomposites showing high photocatalytic activity of hydrogen generation. Appl Catal B 142–143:626–632. doi:10.1016/j.apcatb.2013.05.073

    Article  Google Scholar 

  9. Zhang Z, Cao S-W, Liao Y, Xue C (2015) Selective photocatalytic decomposition of formic acid over AuPd nanoparticle-decorated TiO2 nanofibers toward high-yield hydrogen production. Appl Catal B 162:204–209. doi:10.1016/j.apcatb.2014.06.055

    Article  Google Scholar 

  10. Shen Y, Lua AC (2015) Synthesis of Ni and Ni–Cu supported on carbon nanotubes for hydrogen and carbon production by catalytic decomposition of methane. Appl Catal B 164:61–69. doi:10.1016/j.apcatb.2014.08.038

    Article  Google Scholar 

  11. Patsoura A, Kondarides DI, Verykios XE (2006) Enhancement of photoinduced hydrogen production from irradiated Pt/TiO2 suspensions with simultaneous degradation of azo-dyes. Appl Catal B 64(3–4):171–179. doi:10.1016/j.apcatb.2005.11.015

    Article  Google Scholar 

  12. Yu H-F, Yang S-T (2010) Enhancing thermal stability and photocatalytic activity of anatase-TiO2 nanoparticles by co-doping P and Si elements. J Alloys Compd 492(1–2):695–700. doi:10.1016/j.jallcom.2009.12.021

    Article  Google Scholar 

  13. Behnajady MA, Eskandarloo H (2013) Silver and copper co-impregnated onto TiO2-P25 nanoparticles and its photocatalytic activity. Chem Eng J 228:1207–1213. doi:10.1016/j.cej.2013.04.110

    Article  Google Scholar 

  14. Daghrir R, Drogui P, Robert D (2013) Modified TiO2 for environmental photocatalytic applications: a review. Ind Eng Chem Res 52(10):3581–3599. doi:10.1021/ie303468t

    Google Scholar 

  15. Jang JS, Kim HG, Joshi UA, Jang JW, Lee JS (2008) Fabrication of CdS nanowires decorated with TiO2 nanoparticles for photocatalytic hydrogen production under visible light irradiation. Int J Hydrog Energy 33(21):5975–5980. doi:10.1016/j.ijhydene.2008.07.105

    Article  Google Scholar 

  16. Zhang K, Jing D, Xing C, Guo L (2007) Significantly improved photocatalytic hydrogen production activity over photocatalysts prepared by a novel thermal sulfuration method. Int J Hydrog Energy 32(18):4685–4691. doi:10.1016/j.ijhydene.2007.08.022

    Article  Google Scholar 

  17. Ortega Méndez JA, López CR, Pulido Melián E, González Díaz O, Doña Rodríguez JM, Fernández Hevia D, Macías M (2014) Production of hydrogen by water photo-splitting over commercial and synthesised Au/TiO2 catalysts. Appl Catal B 147:439–452. doi:10.1016/j.apcatb.2013.09.029

    Article  Google Scholar 

  18. Yao X, Liu T, Liu X, Lu L (2014) Loading of CdS nanoparticles on the (1 0 1) surface of elongated TiO2 nanocrystals for efficient visible-light photocatalytic hydrogen evolution from water splitting. Chem Eng J 255:28–39. doi:10.1016/j.cej.2014.06.055

    Article  Google Scholar 

  19. Wang R, Xu D, Liu J, Li K, Wang H (2011) Preparation and photocatalytic properties of CdS/La2Ti2O7 nanocomposites under visible light. Chem Eng J 168(1):455–460. doi:10.1016/j.cej.2011.01.035

    Article  Google Scholar 

  20. Liu M, He L, Liu X, Liu C, Luo S (2014) Reduced graphene oxide and CdTe nanoparticles co-decorated TiO2 nanotube array as a visible light photocatalyst. J Mater Sci 49(5):2263–2269. doi:10.1007/s10853-013-7922-4

    Article  Google Scholar 

  21. Medina-Ramírez I, Liu J, Hernández-Ramírez A, Romo-Bernal C, Pedroza-Herrera G, Jáuregui-Rincón J, Gracia-Pinilla M (2014) Synthesis, characterization, photocatalytic evaluation, and toxicity studies of TiO2–Fe3+ nanocatalyst. J Mater Sci 49(15):5309–5323. doi:10.1007/s10853-014-8234-z

    Article  Google Scholar 

  22. Randeniya LK, Murphy AB, Plumb IC (2008) A study of S-doped TiO2 for photoelectrochemical hydrogen generation from water. J Mater Sci 43(4):1389–1399. doi:10.1007/s10853-007-2309-z

    Article  Google Scholar 

  23. Bumajdad A, Madkour M, Abdel-Moneam Y, El-Kemary M (2014) Nanostructured mesoporous Au/TiO2 for photocatalytic degradation of a textile dye: the effect of size similarity of the deposited Au with that of TiO2 pores. J Mater Sci 49(4):1743–1754. doi:10.1007/s10853-013-7861-0

    Article  Google Scholar 

  24. Li C, Yuan J, Han B, Jiang L, Shangguan W (2010) TiO2 nanotubes incorporated with CdS for photocatalytic hydrogen production from splitting water under visible light irradiation. Int J Hydrog Energy 35(13):7073–7079. doi:10.1016/j.ijhydene.2010.01.008

    Article  Google Scholar 

  25. Bai H, Juay J, Liu Z, Song X, Lee SS, Sun DD (2012) Hierarchical SrTiO3/TiO2 nanofibers heterostructures with high efficiency in photocatalytic H2 generation. Appl Catal B 125:367–374. doi:10.1016/j.apcatb.2012.06.007

    Article  Google Scholar 

  26. Xu X, Liu G, Randorn C, Irvine JTS (2011) g-C3N4 coated SrTiO3 as an efficient photocatalyst for H2 production in aqueous solution under visible light irradiation. Int J Hydrog Energy 36(21):13501–13507. doi:10.1016/j.ijhydene.2011.08.052

    Article  Google Scholar 

  27. Sharma D, Upadhyay S, Satsangi VR, Shrivastav R, Waghmare UV, Dass S (2014) Improved photoelectrochemical water splitting performance of Cu2O/SrTiO3 heterojunction photoelectrode. J Phys Chem C 118(44):25320–25329. doi:10.1021/jp507039n

    Article  Google Scholar 

  28. Shen P, Lofaro JC Jr, Woerner WR, White MG, Su D, Orlov A (2013) Photocatalytic activity of hydrogen evolution over Rh doped SrTiO3 prepared by polymerizable complex method. Chem Eng J 223:200–208. doi:10.1016/j.cej.2013.03.030

    Article  Google Scholar 

  29. Bera A, Wu K, Sheikh A, Alarousu E, Mohammed OF, Wu T (2014) Perovskite oxide SrTiO3 as an efficient electron transporter for hybrid perovskite solar cells. J Phys Chem C 118(49):28494–28501. doi:10.1021/jp509753p

    Article  Google Scholar 

  30. Jain A, Castelli I, Hautier G, Bailey D, Jacobsen K (2013) Performance of genetic algorithms in search for water splitting perovskites. J Mater Sci 48(19):6519–6534. doi:10.1007/s10853-013-7448-9

    Article  Google Scholar 

  31. Huang B-S, Wey M-Y (2013) Characterization of N-doped TiO2 nanoparticles supported on SrTiO3 via a sol–gel process. J Nanopart Res 16(1):1–8. doi:10.1007/s11051-013-2178-0

    Google Scholar 

  32. Kim YK, Park H (2011) Light-harvesting multi-walled carbon nanotubes and CdS hybrids: application to photocatalytic hydrogen production from water. Energy Environ Sci 4(3):685–694. doi:10.1039/C0EE00330A

    Article  Google Scholar 

  33. Zagonel LF, Bäurer M, Bailly A, Renault O, Hoffmann M, Shih S-J, Cockayne D, Barrett N (2009) Orientation-dependent work function of in situ annealed strontium titanate. J Phys Condens Matter 21(31):314013

    Article  Google Scholar 

  34. Sun X, Li G, Xa Zhang, Ding L, Zhang W (2011) Coexistence of the bipolar and unipolar resistive switching behaviours in Au/SrTiO3/Pt cells. J Phys D 44(12):125404

    Article  Google Scholar 

  35. Escobedo Salas S, Serrano Rosales B, de Lasa H (2013) Quantum yield with platinum modified TiO2 photocatalyst for hydrogen production. Appl Catal B 140–141:523–536. doi:10.1016/j.apcatb.2013.04.016

    Article  Google Scholar 

  36. Zhang F, Chen J, Zhang X, Gao W, Jin R, Guan N, Li Y (2004) Synthesis of titania-supported platinum catalyst: the effect of pH on morphology control and valence state during photodeposition. Langmuir 20(21):9329–9334. doi:10.1021/la049394o

    Article  Google Scholar 

  37. Wang Y, Jing M, Zhang M, Yang J (2012) Facile synthesis and photocatalytic activity of platinum decorated TiO2−XNX Perspective to oxygen vacancies and chemical state of dopants. Catal Commun 20:46–50. doi:10.1016/j.catcom.2012.01.003

    Article  Google Scholar 

  38. Zeng Y, Wu W, Lee S, Gao J (2007) Photocatalytic performance of plasma sprayed Pt-modified TiO2 coatings under visible light irradiation. Catal Commun 8(6):906–912. doi:10.1016/j.catcom.2006.09.023

    Article  Google Scholar 

  39. Xin G, Yu B, Xia Y, Hu T, Liu L, Li C (2014) Highly efficient deposition method of platinum over CdS for H2 evolution under visible light. J Phys Chem C 118(38):21928–21934. doi:10.1021/jp505506e

    Article  Google Scholar 

  40. Li FB, Li XZ (2002) The enhancement of photodegradation efficiency using Pt–TiO2 catalyst. Chemosphere 48(10):1103–1111. doi:10.1016/S0045-6535(02)00201-1

    Article  Google Scholar 

  41. Ruiz-Camacho B, Valenzuela MA, González-Huerta RG, Suarez-Alcantara K, Canton SE, Pola-Albores F (2013) Electrochemical and XAS investigation of oxygen reduction reaction on Pt-TiO2-C catalysts. Int J Hydrog Energy 38(28):12648–12656. doi:10.1016/j.ijhydene.2013.01.002

    Article  Google Scholar 

  42. Jiang X, Fu X, Zhang L, Meng S, Chen S (2015) Photocatalytic reforming of glycerol for H2 evolution on Pt/TiO2: fundamental understanding the effect of co-catalyst Pt and the Pt deposition route. J Mater Chem A 3(5):2271–2282. doi:10.1039/C4TA06052K

    Article  Google Scholar 

  43. Murcia JJ, Navío JA, Hidalgo MC (2012) Insights towards the influence of Pt features on the photocatalytic activity improvement of TiO2 by platinisation. Appl Catal B 126:76–85. doi:10.1016/j.apcatb.2012.07.013

    Article  Google Scholar 

  44. Puangpetch T, Sreethawong T, Yoshikawa S, Chavadej S (2009) Hydrogen production from photocatalytic water splitting over mesoporous-assembled SrTiO3 nanocrystal-based photocatalysts. J Mol Catal A 312(1–2):97–106. doi:10.1016/j.molcata.2009.07.012

    Article  Google Scholar 

  45. Thiruvenkatachari R, Vigneswaran S, Moon I (2008) A review on UV/TiO2 photocatalytic oxidation process (Journal Review). Korean J Chem Eng 25(1):64–72. doi:10.1007/s11814-008-0011-8

    Article  Google Scholar 

  46. Neppolian B, Choi HC, Sakthivel S, Arabindoo B, Murugesan V (2002) Solar/UV-induced photocatalytic degradation of three commercial textile dyes. J Hazard Mater 89(2–3):303–317. doi:10.1016/S0304-3894(01)00329-6

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ministry of Science and Technology (MOST), Taiwan, R.O.C., for providing financial support under Grant No. NSC 101-2221-E-005-043-MY3.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Yen Wey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, EC., Huang, BS. & Wey, MY. Influence of thermal treatment atmosphere on photogenerated charge separation of Pt/N–TiO2/SrTiO3 for efficient hydrogen evolution. J Mater Sci 50, 5873–5885 (2015). https://doi.org/10.1007/s10853-015-9137-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9137-3

Keywords

Navigation