Advertisement

Journal of Materials Science

, Volume 50, Issue 17, pp 5873–5885 | Cite as

Influence of thermal treatment atmosphere on photogenerated charge separation of Pt/N–TiO2/SrTiO3 for efficient hydrogen evolution

  • En-Chin Su
  • Bing-Shun Huang
  • Ming-Yen Wey
Original Paper

Abstract

Solar light-responsive platinized N-doped TiO2/SrTiO3 that was thermally treated under H2 atmosphere (H–0.2Pt/N–TiO2/SrTiO3) exhibited high activity for hydrogen evolution under simulated sunlight irradiation. The hydrogen evolution rate of H–0.2Pt/N–TiO2/SrTiO3 was 2740 μmol/h/g, which was approximately 88 times higher than that of N–TiO2/SrTiO3. Results of X-ray photoelectron microscopy demonstrated that the thermal treatment atmosphere was the main factor that contributed to Pt(0) formation, and the proportion of Pt(0) increased in the following order of air < N2 < H2. Moreover, photoluminescence analysis showed that photogenerated charge separation efficiency was positively correlated with the degree of Pt(0) formation, as evidenced by the better photogenerated electron acceptance of Pt(0). The influences of Pt coating amount and photocatalyst concentration on hydrogen evolution efficiency were also investigated. The highest hydrogen evolution efficiency was attained when the Pt coating amount was 0.2 wt% and the photocatalyst concentration was controlled at 2.0 g/L. The stability and reusability experiments for hydrogen evolution and material characterization showed that the H–0.2Pt/N–TiO2/SrTiO3 with high physicochemical stability is a promising candidate material for practical application.

Keywords

TiO2 Photocatalytic Activity Hydrogen Evolution Photogenerated Electron Coating Amount 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank the Ministry of Science and Technology (MOST), Taiwan, R.O.C., for providing financial support under Grant No. NSC 101-2221-E-005-043-MY3.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Markovskaya DV, Cherepanova SV, Saraev AA, Gerasimov EY, Kozlova EA (2015) Photocatalytic hydrogen evolution from aqueous solutions of Na2S/Na2SO3 under visible light irradiation on CuS/Cd0.3Zn0.7S and NizCd0.3Zn0.7S1+z. Chem Eng J 262:146–155. doi: 10.1016/j.cej.2014.09.090 CrossRefGoogle Scholar
  2. 2.
    Li Z, Yu L, Liu Y, Sun S (2014) Enhanced photovoltaic performance of solar cell based on front-side illuminated CdSe/CdS double-sensitized TiO2 nanotube arrays electrode. J Mater Sci 49(18):6392–6403. doi: 10.1007/s10853-014-8366-1 CrossRefGoogle Scholar
  3. 3.
    Mazloomi K, Gomes C (2012) Hydrogen as an energy carrier: prospects and challenges. Renew Sustain Energy Rev 16(5):3024–3033. doi: 10.1016/j.rser.2012.02.028 CrossRefGoogle Scholar
  4. 4.
    Janaun J, Ellis N (2010) Perspectives on biodiesel as a sustainable fuel. Renew Sustain Energy Rev 14(4):1312–1320. doi: 10.1016/j.rser.2009.12.011 CrossRefGoogle Scholar
  5. 5.
    Niphadkar PS, Chitale SK, Sonar SK, Deshpande SS, Joshi PN, Awate SV (2014) Synthesis, characterization and photocatalytic behavior of TiO2–SiO2 mesoporous composites in hydrogen generation from water splitting. J Mater Sci 49(18):6383–6391. doi: 10.1007/s10853-014-8365-2 CrossRefGoogle Scholar
  6. 6.
    Chaubey R, Sahu S, James OO, Maity S (2013) A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources. Renew Sustain Energy Rev 23:443–462. doi: 10.1016/j.rser.2013.02.019 CrossRefGoogle Scholar
  7. 7.
    Cao S-W, Liu X-F, Yuan Y-P, Zhang Z-Y, Liao Y-S, Fang J, Loo SCJ, Sum TC, Xue C (2014) Solar-to-fuels conversion over In2O3/g-C3N4 hybrid photocatalysts. Appl Catal B 147:940–946. doi: 10.1016/j.apcatb.2013.10.029 CrossRefGoogle Scholar
  8. 8.
    Wang Y-F, Hsieh M-C, Lee J-F, Yang C-M (2013) Nonaqueous synthesis of CoOX/TiO2 nanocomposites showing high photocatalytic activity of hydrogen generation. Appl Catal B 142–143:626–632. doi: 10.1016/j.apcatb.2013.05.073 CrossRefGoogle Scholar
  9. 9.
    Zhang Z, Cao S-W, Liao Y, Xue C (2015) Selective photocatalytic decomposition of formic acid over AuPd nanoparticle-decorated TiO2 nanofibers toward high-yield hydrogen production. Appl Catal B 162:204–209. doi: 10.1016/j.apcatb.2014.06.055 CrossRefGoogle Scholar
  10. 10.
    Shen Y, Lua AC (2015) Synthesis of Ni and Ni–Cu supported on carbon nanotubes for hydrogen and carbon production by catalytic decomposition of methane. Appl Catal B 164:61–69. doi: 10.1016/j.apcatb.2014.08.038 CrossRefGoogle Scholar
  11. 11.
    Patsoura A, Kondarides DI, Verykios XE (2006) Enhancement of photoinduced hydrogen production from irradiated Pt/TiO2 suspensions with simultaneous degradation of azo-dyes. Appl Catal B 64(3–4):171–179. doi: 10.1016/j.apcatb.2005.11.015 CrossRefGoogle Scholar
  12. 12.
    Yu H-F, Yang S-T (2010) Enhancing thermal stability and photocatalytic activity of anatase-TiO2 nanoparticles by co-doping P and Si elements. J Alloys Compd 492(1–2):695–700. doi: 10.1016/j.jallcom.2009.12.021 CrossRefGoogle Scholar
  13. 13.
    Behnajady MA, Eskandarloo H (2013) Silver and copper co-impregnated onto TiO2-P25 nanoparticles and its photocatalytic activity. Chem Eng J 228:1207–1213. doi: 10.1016/j.cej.2013.04.110 CrossRefGoogle Scholar
  14. 14.
    Daghrir R, Drogui P, Robert D (2013) Modified TiO2 for environmental photocatalytic applications: a review. Ind Eng Chem Res 52(10):3581–3599. doi: 10.1021/ie303468t Google Scholar
  15. 15.
    Jang JS, Kim HG, Joshi UA, Jang JW, Lee JS (2008) Fabrication of CdS nanowires decorated with TiO2 nanoparticles for photocatalytic hydrogen production under visible light irradiation. Int J Hydrog Energy 33(21):5975–5980. doi: 10.1016/j.ijhydene.2008.07.105 CrossRefGoogle Scholar
  16. 16.
    Zhang K, Jing D, Xing C, Guo L (2007) Significantly improved photocatalytic hydrogen production activity over photocatalysts prepared by a novel thermal sulfuration method. Int J Hydrog Energy 32(18):4685–4691. doi: 10.1016/j.ijhydene.2007.08.022 CrossRefGoogle Scholar
  17. 17.
    Ortega Méndez JA, López CR, Pulido Melián E, González Díaz O, Doña Rodríguez JM, Fernández Hevia D, Macías M (2014) Production of hydrogen by water photo-splitting over commercial and synthesised Au/TiO2 catalysts. Appl Catal B 147:439–452. doi: 10.1016/j.apcatb.2013.09.029 CrossRefGoogle Scholar
  18. 18.
    Yao X, Liu T, Liu X, Lu L (2014) Loading of CdS nanoparticles on the (1 0 1) surface of elongated TiO2 nanocrystals for efficient visible-light photocatalytic hydrogen evolution from water splitting. Chem Eng J 255:28–39. doi: 10.1016/j.cej.2014.06.055 CrossRefGoogle Scholar
  19. 19.
    Wang R, Xu D, Liu J, Li K, Wang H (2011) Preparation and photocatalytic properties of CdS/La2Ti2O7 nanocomposites under visible light. Chem Eng J 168(1):455–460. doi: 10.1016/j.cej.2011.01.035 CrossRefGoogle Scholar
  20. 20.
    Liu M, He L, Liu X, Liu C, Luo S (2014) Reduced graphene oxide and CdTe nanoparticles co-decorated TiO2 nanotube array as a visible light photocatalyst. J Mater Sci 49(5):2263–2269. doi: 10.1007/s10853-013-7922-4 CrossRefGoogle Scholar
  21. 21.
    Medina-Ramírez I, Liu J, Hernández-Ramírez A, Romo-Bernal C, Pedroza-Herrera G, Jáuregui-Rincón J, Gracia-Pinilla M (2014) Synthesis, characterization, photocatalytic evaluation, and toxicity studies of TiO2–Fe3+ nanocatalyst. J Mater Sci 49(15):5309–5323. doi: 10.1007/s10853-014-8234-z CrossRefGoogle Scholar
  22. 22.
    Randeniya LK, Murphy AB, Plumb IC (2008) A study of S-doped TiO2 for photoelectrochemical hydrogen generation from water. J Mater Sci 43(4):1389–1399. doi: 10.1007/s10853-007-2309-z CrossRefGoogle Scholar
  23. 23.
    Bumajdad A, Madkour M, Abdel-Moneam Y, El-Kemary M (2014) Nanostructured mesoporous Au/TiO2 for photocatalytic degradation of a textile dye: the effect of size similarity of the deposited Au with that of TiO2 pores. J Mater Sci 49(4):1743–1754. doi: 10.1007/s10853-013-7861-0 CrossRefGoogle Scholar
  24. 24.
    Li C, Yuan J, Han B, Jiang L, Shangguan W (2010) TiO2 nanotubes incorporated with CdS for photocatalytic hydrogen production from splitting water under visible light irradiation. Int J Hydrog Energy 35(13):7073–7079. doi: 10.1016/j.ijhydene.2010.01.008 CrossRefGoogle Scholar
  25. 25.
    Bai H, Juay J, Liu Z, Song X, Lee SS, Sun DD (2012) Hierarchical SrTiO3/TiO2 nanofibers heterostructures with high efficiency in photocatalytic H2 generation. Appl Catal B 125:367–374. doi: 10.1016/j.apcatb.2012.06.007 CrossRefGoogle Scholar
  26. 26.
    Xu X, Liu G, Randorn C, Irvine JTS (2011) g-C3N4 coated SrTiO3 as an efficient photocatalyst for H2 production in aqueous solution under visible light irradiation. Int J Hydrog Energy 36(21):13501–13507. doi: 10.1016/j.ijhydene.2011.08.052 CrossRefGoogle Scholar
  27. 27.
    Sharma D, Upadhyay S, Satsangi VR, Shrivastav R, Waghmare UV, Dass S (2014) Improved photoelectrochemical water splitting performance of Cu2O/SrTiO3 heterojunction photoelectrode. J Phys Chem C 118(44):25320–25329. doi: 10.1021/jp507039n CrossRefGoogle Scholar
  28. 28.
    Shen P, Lofaro JC Jr, Woerner WR, White MG, Su D, Orlov A (2013) Photocatalytic activity of hydrogen evolution over Rh doped SrTiO3 prepared by polymerizable complex method. Chem Eng J 223:200–208. doi: 10.1016/j.cej.2013.03.030 CrossRefGoogle Scholar
  29. 29.
    Bera A, Wu K, Sheikh A, Alarousu E, Mohammed OF, Wu T (2014) Perovskite oxide SrTiO3 as an efficient electron transporter for hybrid perovskite solar cells. J Phys Chem C 118(49):28494–28501. doi: 10.1021/jp509753p CrossRefGoogle Scholar
  30. 30.
    Jain A, Castelli I, Hautier G, Bailey D, Jacobsen K (2013) Performance of genetic algorithms in search for water splitting perovskites. J Mater Sci 48(19):6519–6534. doi: 10.1007/s10853-013-7448-9 CrossRefGoogle Scholar
  31. 31.
    Huang B-S, Wey M-Y (2013) Characterization of N-doped TiO2 nanoparticles supported on SrTiO3 via a sol–gel process. J Nanopart Res 16(1):1–8. doi: 10.1007/s11051-013-2178-0 Google Scholar
  32. 32.
    Kim YK, Park H (2011) Light-harvesting multi-walled carbon nanotubes and CdS hybrids: application to photocatalytic hydrogen production from water. Energy Environ Sci 4(3):685–694. doi: 10.1039/C0EE00330A CrossRefGoogle Scholar
  33. 33.
    Zagonel LF, Bäurer M, Bailly A, Renault O, Hoffmann M, Shih S-J, Cockayne D, Barrett N (2009) Orientation-dependent work function of in situ annealed strontium titanate. J Phys Condens Matter 21(31):314013CrossRefGoogle Scholar
  34. 34.
    Sun X, Li G, Xa Zhang, Ding L, Zhang W (2011) Coexistence of the bipolar and unipolar resistive switching behaviours in Au/SrTiO3/Pt cells. J Phys D 44(12):125404CrossRefGoogle Scholar
  35. 35.
    Escobedo Salas S, Serrano Rosales B, de Lasa H (2013) Quantum yield with platinum modified TiO2 photocatalyst for hydrogen production. Appl Catal B 140–141:523–536. doi: 10.1016/j.apcatb.2013.04.016 CrossRefGoogle Scholar
  36. 36.
    Zhang F, Chen J, Zhang X, Gao W, Jin R, Guan N, Li Y (2004) Synthesis of titania-supported platinum catalyst: the effect of pH on morphology control and valence state during photodeposition. Langmuir 20(21):9329–9334. doi: 10.1021/la049394o CrossRefGoogle Scholar
  37. 37.
    Wang Y, Jing M, Zhang M, Yang J (2012) Facile synthesis and photocatalytic activity of platinum decorated TiO2−XNX Perspective to oxygen vacancies and chemical state of dopants. Catal Commun 20:46–50. doi: 10.1016/j.catcom.2012.01.003 CrossRefGoogle Scholar
  38. 38.
    Zeng Y, Wu W, Lee S, Gao J (2007) Photocatalytic performance of plasma sprayed Pt-modified TiO2 coatings under visible light irradiation. Catal Commun 8(6):906–912. doi: 10.1016/j.catcom.2006.09.023 CrossRefGoogle Scholar
  39. 39.
    Xin G, Yu B, Xia Y, Hu T, Liu L, Li C (2014) Highly efficient deposition method of platinum over CdS for H2 evolution under visible light. J Phys Chem C 118(38):21928–21934. doi: 10.1021/jp505506e CrossRefGoogle Scholar
  40. 40.
    Li FB, Li XZ (2002) The enhancement of photodegradation efficiency using Pt–TiO2 catalyst. Chemosphere 48(10):1103–1111. doi: 10.1016/S0045-6535(02)00201-1 CrossRefGoogle Scholar
  41. 41.
    Ruiz-Camacho B, Valenzuela MA, González-Huerta RG, Suarez-Alcantara K, Canton SE, Pola-Albores F (2013) Electrochemical and XAS investigation of oxygen reduction reaction on Pt-TiO2-C catalysts. Int J Hydrog Energy 38(28):12648–12656. doi: 10.1016/j.ijhydene.2013.01.002 CrossRefGoogle Scholar
  42. 42.
    Jiang X, Fu X, Zhang L, Meng S, Chen S (2015) Photocatalytic reforming of glycerol for H2 evolution on Pt/TiO2: fundamental understanding the effect of co-catalyst Pt and the Pt deposition route. J Mater Chem A 3(5):2271–2282. doi: 10.1039/C4TA06052K CrossRefGoogle Scholar
  43. 43.
    Murcia JJ, Navío JA, Hidalgo MC (2012) Insights towards the influence of Pt features on the photocatalytic activity improvement of TiO2 by platinisation. Appl Catal B 126:76–85. doi: 10.1016/j.apcatb.2012.07.013 CrossRefGoogle Scholar
  44. 44.
    Puangpetch T, Sreethawong T, Yoshikawa S, Chavadej S (2009) Hydrogen production from photocatalytic water splitting over mesoporous-assembled SrTiO3 nanocrystal-based photocatalysts. J Mol Catal A 312(1–2):97–106. doi: 10.1016/j.molcata.2009.07.012 CrossRefGoogle Scholar
  45. 45.
    Thiruvenkatachari R, Vigneswaran S, Moon I (2008) A review on UV/TiO2 photocatalytic oxidation process (Journal Review). Korean J Chem Eng 25(1):64–72. doi: 10.1007/s11814-008-0011-8 CrossRefGoogle Scholar
  46. 46.
    Neppolian B, Choi HC, Sakthivel S, Arabindoo B, Murugesan V (2002) Solar/UV-induced photocatalytic degradation of three commercial textile dyes. J Hazard Mater 89(2–3):303–317. doi: 10.1016/S0304-3894(01)00329-6 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Environmental EngineeringNational Chung Hsing UniversityTaichungTaiwan, ROC
  2. 2.Taiwan Research InstituteTaipeiTaiwan, ROC

Personalised recommendations