Skip to main content
Log in

Effect of complex magnetic structure on the magnetocaloric and magneto-transport properties in GdCuSi

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

GdCuSi has been studied by structural, magnetic, magneto-thermal, and magneto-transport measurements. The compound crystallizes in the Ni2In-type hexagonal structure. Magnetic measurements show antiferromagnetic ordering at T N = 14.2 K and a magnetic anomaly near 5 K, which are confirmed by different measurements. Magnetocaloric effect (MCE) has been estimated from both magnetization and heat capacity data and it shows a change in sign below T N. Similar to MCE, magnetoresistance (MR) data also show sign change below T N. The compound shows large MCE and MR near its ordering temperature. The sign change in MCE and MR is attributed to the non-collinear antiferromagnetic structure of the compound. The theoretical calculations suggest competition of ferromagnetic and antiferromagnetic interactions, which causes non-collinear magnetic structure in this compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gupta S, Suresh KG (2015) Review on magnetic and related properties of RTX compounds. J Alloy Compd 618:562–606

    Article  Google Scholar 

  2. Bazela W, Szytula A, Leciejewicz J (1985) Neutron-diffraction study of RECuSi (RE = Tb, Dy, Ho) intermetallic compounds. Solid State Commun 56:1043–1045 and references therein

    Article  Google Scholar 

  3. Oesterreicher H (1976) Magnetic studies on compounds RCuSi, R6Cu8Si8, and RCu2Si2 (R = Pr, Gd, Tb). Phys Status Solidi (a) 34:723–728

    Article  Google Scholar 

  4. Mulder FM, Thiel RC, Buschow KHJ (1994) 155Gd Mössbauer effect in AlB2-type compounds. J Alloy Compd 205:169–174

    Article  Google Scholar 

  5. Gignoux D, Schmitt D, Zerguine M (1986) Magnetic properties of CeCuSi. Solid State Commun 58:559–562

    Article  Google Scholar 

  6. Oleś A, Duraj R, Kolenda M, Penc B, Szytuła A (2004) Magnetic properties of DyCuSi and HoCuSi studied by neutron diffraction and magnetic measurements. J Alloy Compd 363:63–67

    Article  Google Scholar 

  7. Chen J, Shen BG, Dong QY, Sun JR (2010) Giant magnetic entropy change in antiferromagnetic DyCuSi compound. Solid State Commun 150:1429–1431

    Article  Google Scholar 

  8. Chen J, Shen BG, Dong QY, Hu FX, Sun JR (2010) Giant reversible magnetocaloric effect in metamagnetic HoCuSi compound. Appl Phys Lett 96:152501-1–152501-3

    Google Scholar 

  9. Gupta S, Suresh KG, Nigam AK (2013) Interplay between magnetism and magnetocaloric effect in NdCuSi. arXiv:1305.1124

  10. Schobinger-Papamantellos P, Ritter C, Buschow KHJ, Duong NP (2001) Magnetic phase diagram of ErCuSi studied by neutron diffraction and magnetic measurements. J Magn Magn Mater 223:203–214

    Article  Google Scholar 

  11. Schobinger-Papamantellos P, Buschow KHJ, Ritter C (2004) Magnetic ordering of DyCuSi and HoCuSi studied by neutron diffraction. J Alloy Compd 384:12–21

    Article  Google Scholar 

  12. Pöttgen R, Łątka K (2010) 155Gd Mössbauer spectroscopy on intermetallics—an overview. Z Anorg Allg Chem 636:2244–2255

    Article  Google Scholar 

  13. Iandelli A (1983) A low temperature crystal modification of the rare earth ternary compounds RCuSi. J Less-Common Met 90:121–126

    Article  Google Scholar 

  14. Shorikov AO, Lukoyanov AV, Korotin MA, Anisimov VI (2005) Magnetic state and electronic structure of the δ and α phases of metallic Pu and its compounds. Phys Rev B 72:024458

    Article  Google Scholar 

  15. Łątka K, Kmieć R, Pacyna AW, Fickenscher T, Hoffmann R-D, Pöttgen R (2004) Magnetism and 155Gd Mössbauer spectroscopy of GdAuMg. Solid State Sci 6:301–309

    Article  Google Scholar 

  16. Łątka K, Kmieć R, Pacyna AW, Fickenscher T, Hoffmann R-D, Rainer Pöttgen (2004) Magnetic Ordering in GdAuCd. J Magn Magn Mat 280(1):90–100

    Article  Google Scholar 

  17. Hoffmann R-D, Fickenscher T, Pöttgen R, Felser C, Łątka K, Kmieć R (2002) Ferromagnetic ordering in GdPdCd. Solid State Sci 4:609–617

    Article  Google Scholar 

  18. Gupta S, Suresh KG, Nigam AK, Mudryk Y, Paudyal D, Pecharsky VK, Gschneidner KA Jr (2014) The nature of the first order isostructural transition in GdRhSn. J Alloy Compd 613:280–287

    Article  Google Scholar 

Download references

Acknowledgements

SG thanks IIT Bombay for providing Research Associateship. The authors thank to UGC-DAE CSR, Indore and Dr. R. Rawat for providing the facility of transport measurements. Theoretical calculations of the electronic structure were supported by the grant of the Russian Science Foundation (project No. 14-22-00004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Suresh, K.G. & Lukoyanov, A.V. Effect of complex magnetic structure on the magnetocaloric and magneto-transport properties in GdCuSi. J Mater Sci 50, 5723–5728 (2015). https://doi.org/10.1007/s10853-015-9116-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9116-8

Keywords

Navigation