Journal of Materials Science

, Volume 50, Issue 17, pp 5723–5728 | Cite as

Effect of complex magnetic structure on the magnetocaloric and magneto-transport properties in GdCuSi

Original Paper


GdCuSi has been studied by structural, magnetic, magneto-thermal, and magneto-transport measurements. The compound crystallizes in the Ni2In-type hexagonal structure. Magnetic measurements show antiferromagnetic ordering at T N = 14.2 K and a magnetic anomaly near 5 K, which are confirmed by different measurements. Magnetocaloric effect (MCE) has been estimated from both magnetization and heat capacity data and it shows a change in sign below T N. Similar to MCE, magnetoresistance (MR) data also show sign change below T N. The compound shows large MCE and MR near its ordering temperature. The sign change in MCE and MR is attributed to the non-collinear antiferromagnetic structure of the compound. The theoretical calculations suggest competition of ferromagnetic and antiferromagnetic interactions, which causes non-collinear magnetic structure in this compound.


Magnetocaloric Effect Magnetic Entropy Change Heat Capacity Data Spin Reorientation Strong Electronic Correlation 



SG thanks IIT Bombay for providing Research Associateship. The authors thank to UGC-DAE CSR, Indore and Dr. R. Rawat for providing the facility of transport measurements. Theoretical calculations of the electronic structure were supported by the grant of the Russian Science Foundation (project No. 14-22-00004).


  1. 1.
    Gupta S, Suresh KG (2015) Review on magnetic and related properties of RTX compounds. J Alloy Compd 618:562–606CrossRefGoogle Scholar
  2. 2.
    Bazela W, Szytula A, Leciejewicz J (1985) Neutron-diffraction study of RECuSi (RE = Tb, Dy, Ho) intermetallic compounds. Solid State Commun 56:1043–1045 and references therein CrossRefGoogle Scholar
  3. 3.
    Oesterreicher H (1976) Magnetic studies on compounds RCuSi, R6Cu8Si8, and RCu2Si2 (R = Pr, Gd, Tb). Phys Status Solidi (a) 34:723–728CrossRefGoogle Scholar
  4. 4.
    Mulder FM, Thiel RC, Buschow KHJ (1994) 155Gd Mössbauer effect in AlB2-type compounds. J Alloy Compd 205:169–174CrossRefGoogle Scholar
  5. 5.
    Gignoux D, Schmitt D, Zerguine M (1986) Magnetic properties of CeCuSi. Solid State Commun 58:559–562CrossRefGoogle Scholar
  6. 6.
    Oleś A, Duraj R, Kolenda M, Penc B, Szytuła A (2004) Magnetic properties of DyCuSi and HoCuSi studied by neutron diffraction and magnetic measurements. J Alloy Compd 363:63–67CrossRefGoogle Scholar
  7. 7.
    Chen J, Shen BG, Dong QY, Sun JR (2010) Giant magnetic entropy change in antiferromagnetic DyCuSi compound. Solid State Commun 150:1429–1431CrossRefGoogle Scholar
  8. 8.
    Chen J, Shen BG, Dong QY, Hu FX, Sun JR (2010) Giant reversible magnetocaloric effect in metamagnetic HoCuSi compound. Appl Phys Lett 96:152501-1–152501-3Google Scholar
  9. 9.
    Gupta S, Suresh KG, Nigam AK (2013) Interplay between magnetism and magnetocaloric effect in NdCuSi. arXiv:1305.1124
  10. 10.
    Schobinger-Papamantellos P, Ritter C, Buschow KHJ, Duong NP (2001) Magnetic phase diagram of ErCuSi studied by neutron diffraction and magnetic measurements. J Magn Magn Mater 223:203–214CrossRefGoogle Scholar
  11. 11.
    Schobinger-Papamantellos P, Buschow KHJ, Ritter C (2004) Magnetic ordering of DyCuSi and HoCuSi studied by neutron diffraction. J Alloy Compd 384:12–21CrossRefGoogle Scholar
  12. 12.
    Pöttgen R, Łątka K (2010) 155Gd Mössbauer spectroscopy on intermetallics—an overview. Z Anorg Allg Chem 636:2244–2255CrossRefGoogle Scholar
  13. 13.
    Iandelli A (1983) A low temperature crystal modification of the rare earth ternary compounds RCuSi. J Less-Common Met 90:121–126CrossRefGoogle Scholar
  14. 14.
    Shorikov AO, Lukoyanov AV, Korotin MA, Anisimov VI (2005) Magnetic state and electronic structure of the δ and α phases of metallic Pu and its compounds. Phys Rev B 72:024458CrossRefGoogle Scholar
  15. 15.
    Łątka K, Kmieć R, Pacyna AW, Fickenscher T, Hoffmann R-D, Pöttgen R (2004) Magnetism and 155Gd Mössbauer spectroscopy of GdAuMg. Solid State Sci 6:301–309CrossRefGoogle Scholar
  16. 16.
    Łątka K, Kmieć R, Pacyna AW, Fickenscher T, Hoffmann R-D, Rainer Pöttgen (2004) Magnetic Ordering in GdAuCd. J Magn Magn Mat 280(1):90–100CrossRefGoogle Scholar
  17. 17.
    Hoffmann R-D, Fickenscher T, Pöttgen R, Felser C, Łątka K, Kmieć R (2002) Ferromagnetic ordering in GdPdCd. Solid State Sci 4:609–617CrossRefGoogle Scholar
  18. 18.
    Gupta S, Suresh KG, Nigam AK, Mudryk Y, Paudyal D, Pecharsky VK, Gschneidner KA Jr (2014) The nature of the first order isostructural transition in GdRhSn. J Alloy Compd 613:280–287CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology BombayMumbaiIndia
  2. 2.Institute of Metal PhysicsRussian Academy of SciencesYekaterinburgRussia
  3. 3.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations