Journal of Materials Science

, Volume 50, Issue 16, pp 5475–5481 | Cite as

Ferroelectric properties and the origin of the magnetism in the Bi6Fe2Ti3O18 thin films

  • Hui Sun
  • Baowen Zou
  • Xiaoran Ni
  • Xiangyu Mao
  • Xiaobing Chen
  • Jinsong Zhu
Original Paper


The Fe-containing Aurivillius phase Bi6Fe2Ti3O18 (BFFT) thin films were successfully prepared using the chemical solution deposition technique. The microstructure, ferroelectricity, and magnetic properties were investigated. A defined hysteresis loop was obtained with the remnant polarization (2P r) 22.6 μC/cm2 at 2 kHz under the electric field ~600 kV/cm. The frequency dependence of hysteresis loops was also studied to exclude contribution of the leakage current to polarization in BFFT thin film. Furthermore, the electromechanical responses of the films were investigated using piezoresponse force microscopy. These results indicate the intrinsic ferroelectricity in the present BFFT films. It was found that the BFFT film shows room-temperature weak ferromagnetism with the saturated magnetization (M s) ~2.9 emu/cm3. To explore the origin of the observed weak ferromagnetism, the magnetism of the same stoichiometric ceramics and the films was compared. The BFFT ceramics show antiferromagnetic interaction background, while the magnetism of the BFFT film may originate from the spin canting of the coupling of the Fe3+-based and Fe2+-based sublattices. The existence of Fe2+ ions in the BFFT films was also proved by the XPS spectrum.


BiFeO3 Weak Ferromagnetism Chemical Solution Deposition Magnetoelectric Coupling Piezoresponse Force Microscopy 



This work was supported by the National Science Foundation of China (Grant Nos. 51402256 and 11374227) and Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (Grant No. 12KJB140013).


  1. 1.
    Hur N, Park S, Sharma PA, Ahn JS, Guha S, Cheong SW (2004) Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429:392CrossRefGoogle Scholar
  2. 2.
    Fiebig M (2005) Revival of the magnetoelectric effect. J Phys D Appl Phys 38:R123CrossRefGoogle Scholar
  3. 3.
    Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B, Viehland D, Vaithyanathan V, Schlom DG, Waghmare UV, Spaldin NA, Rabe KM, Wutting M, Ramesh R (2003) Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299:1719CrossRefGoogle Scholar
  4. 4.
    Catalan G, Scott JF (2009) Physics and applications of bismuth ferrite. Adv Mater 21:2643CrossRefGoogle Scholar
  5. 5.
    Zheng H, Wang J, Lofland SE, Ma Z et al (2004) Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 303:661CrossRefGoogle Scholar
  6. 6.
    Eerestein W, Mathur ND, Scott JF (2006) Multiferroic and magnetoelectric materials. Nature (London) 442:759CrossRefGoogle Scholar
  7. 7.
    Wang KF, Liu J-M, Ren ZF (2009) Multiferroicity: the coupling between magnetic and polarization orders. Adv Phys 58:321CrossRefGoogle Scholar
  8. 8.
    Kubel F, Schmid H (1990) Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. Acta Crystallogr Sect B 46:698CrossRefGoogle Scholar
  9. 9.
    Das SR, Choudhary RNP, Bhattacharya P, Katiyar RS, Dutta P, Manivanna A, Seehra S (2007) Structural and multiferroic properties of La-modified BiFeO3 ceramics. J Appl Phys 101:034104CrossRefGoogle Scholar
  10. 10.
    Chu YH, He Q, Yang CH, Yu P et al (2009) Nanoscale control of domain architectures in BiFeO3 thin films. Nano Lett 9:1762Google Scholar
  11. 11.
    Bocher L, Gloter A, Crassous A, Garcia V et al (2012) Atomic and electronic structure of the BaTiO3/Fe interface in multiferroic tunnel junctions. Nano Lett 12:376CrossRefGoogle Scholar
  12. 12.
    Singh RS, Bhimasankaram T, Kumar GS, Suryanarayana SV (1994) Dielectric and magnetoelectric properties of Bi5FeTi3O15. Solid State Commun 91:567CrossRefGoogle Scholar
  13. 13.
    Srinivas A, Suryanarayana SV, Kumar GS, Mahesh KM (1999) Magnetoelectric measurements on Bi5FeTi3O15 and Bi6Fe2Ti3O18. J Phys Condens Matter 11:3335CrossRefGoogle Scholar
  14. 14.
    Kubel F, Schmid H (1992) X-ray room temperature structure from single crystal data, powder diffraction measurements and optical studies of the Aurivillius phase Bi5(Ti3Fe)O15. Ferroelectrics 129:101CrossRefGoogle Scholar
  15. 15.
    Snedden A, Hervoches CH, Lightfoot P (2003) Ferroelectric phase transitions in SrBi2Nb2O9 and Bi5Ti3FeO15: a powder neutron diffraction study. Phys Rev B 67:092192CrossRefGoogle Scholar
  16. 16.
    Krzhizhanovskaya M, Filatov S, Gusarov V, Paufler P, Bubnova R, Morozov M, Meyer DC (2005) Aurivillius phases in the Bi4Ti3O12/BiFeO3 system: thermal behaviour and crystal structure. Z Anorg Allg Chem 631:1603CrossRefGoogle Scholar
  17. 17.
    Park BH, Hyun SJ, Bu SD, Noh TW, Lee J, Kim HD, Kim TH, Jo W (1999) Differences in nature of defects between SrBi2Ta2O9 and Bi4Ti3O12. Appl Phys Lett 74:1907CrossRefGoogle Scholar
  18. 18.
    Park BH, Kang BS, Bu SD, Noh TW, Lee J, Jo W (1999) Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature 401:682CrossRefGoogle Scholar
  19. 19.
    Zhang ST, Chen YF, Liu ZG, Ming NB, Wang J, Cheng GX (2005) Structures and electrical properties of Bi5FeTi3O15 thin films. J Appl Phys 97:104106CrossRefGoogle Scholar
  20. 20.
    Dong XW, Wang KF, Wan JG, Zhu JS, Liu JM (2008) Magnetocapacitance of polycrystalline Bi5Ti3FeO15 prepared by sol-gel method. J Appl Phys 103:094101CrossRefGoogle Scholar
  21. 21.
    Mao XY, Wang W, Chen XB (2008) Electrical and magnetic properties of Bi5FeTi3O15 compound prepared by inserting BiFeO3 into Bi4Ti3O12. Solid State Commun 147:186CrossRefGoogle Scholar
  22. 22.
    Sun H, Lu XM, Su J, Xu TT, Ju CC, Huang FZ, Zhu JS (2012) Multiferroic behaviour and the magneto-dielectric effect in Bi5FeTi3O15 thin films. J Phys D Appl Phys 45:385001CrossRefGoogle Scholar
  23. 23.
    Mao XY, Wang W, Chen XB, Lu YL (2009) Multiferroic properties of layer-structured Bi5Fe0.5Co0.5Ti3O15 ceramics. Appl Phys Lett 95:082901CrossRefGoogle Scholar
  24. 24.
    Sun H, Lu XM, Xu TT, Su J, Jin YM, Ju CC, Huang FZ, Zhu JS (2012) Study of multiferroic properties in Bi5Fe0.5Co0.5Ti3O15 thin films. J Appl Phys 111:124116CrossRefGoogle Scholar
  25. 25.
    Li JB, Huang YP, Rao GH, Liu GY, Luo J, Chen JR, Liang JK (2010) Ferroelectric transition of Aurivillius compounds Bi5Ti3FeO15 and Bi6Ti3Fe2O18. Appl Phys Lett 96:222903CrossRefGoogle Scholar
  26. 26.
    Prasad NV, Kumar GS (2004) Low temperature magnetoelectric measurements on rare earth substituted bismuth layered structure ferroelectromagnetic ceramic. Mater Sci Eng B 108:194CrossRefGoogle Scholar
  27. 27.
    Raghavan CM, Kim JW, Kim J-W, Kim SS (2014) Effect of La- and V- doping on structural, electric and multiferroic properties of Bi6Fe2Ti3O18 thin films. Ceram Int 40:10649CrossRefGoogle Scholar
  28. 28.
    Bucko MM, Polnar J, Przewozik J, Zukrowski J, Kapusta C (2010) Magnetic properties of the Bi6Fe2Ti3O18 Aurivillius phase prepared by hydrothermal method. Adv Sci Technol 67:170CrossRefGoogle Scholar
  29. 29.
    Rymarczyk J, Hanc A, Derca G, Ilczuk J (2008) Mossbauer spectroscopy, X-ray diffraction and SEM studies on multiferroic Bi5Ti3FeO15 ceramics. Acta Phys Pol A 114:1579Google Scholar
  30. 30.
    Singh SK, Ishiwara H, Sato K, Maruyama K (2007) Microstructure and frequency dependent electrical properties of Mn-substituted BiFeO3 thin films. J Appl Phys 102:094109CrossRefGoogle Scholar
  31. 31.
    Bose S, Krupanidhi SB (2007) Improved ferroelectric and leakage properties in symmetric BiFeO3/SrTiO3 superlattice. Appl Phys Lett 90:212902CrossRefGoogle Scholar
  32. 32.
    Scott JF (2000) Ferroelectric memories. Springer, New YorkCrossRefGoogle Scholar
  33. 33.
    Sigh MK, Prellier W, Sigh MP, Katiyar RS, Scott JF (2008) Spin-glass transition in single-crystal BiFeO3. Phys Rev B 77:144403CrossRefGoogle Scholar
  34. 34.
    Yang J, Tong W, Liu Z, Zhu XB, Dai JM, Song WH, Yang ZR, Sun YP (2012) Structural, magnetic, and EPR studies of the Aurivillius phase Bi6Fe2Ti3O18 and Bi6FeCrTi3O18. Phys Rev B 86:104410CrossRefGoogle Scholar
  35. 35.
    Liu Z, Yang J, Tang XW, Yin LH, Zhu XB, Dai JM, Sun YP (2012) Multiferroic properties of Aurivillius phase Bi6Fe2−xCoxTi3O18 thin films prepared by a chemical solution deposition route. Appl Phys Lett 101:122402CrossRefGoogle Scholar
  36. 36.
    Yang J, Tong W, Liu Z, Zhu XB, Dai JM, Song WH, Yang ZR, Sun YP (2012) Structural, magnetic, and EPR studies of the Aurivillius phase Bi6Fe2Ti3O18 and Bi6FeCrTi3O18. Phys Rev B 86:104410CrossRefGoogle Scholar
  37. 37.
    Zhao HY, Kimura H, Cheng ZX et al (2014) Large magnetoelectric coupling in magnetically short-range ordered Bi5Ti3FeO15 film. Sci Rep 4:5255Google Scholar
  38. 38.
    Venkatesan S et al (2008) Monodomain strained ferroelectric PbTiO3 thin films: phase transition and critical thickness study. Phys Rev B 78:104112CrossRefGoogle Scholar
  39. 39.
    Singh MK, Katiyar RS, Prellier W, Scott JF (2009) The Almeida–Thouless line in BiFeO3: is bismuth ferrite a mean field spin glass? J Phys Condens Matter 21:042202CrossRefGoogle Scholar
  40. 40.
    Huang F, Lu X, Wang Z, Lin W, Kan Y, Bo F, Cai W, Zhu J (2009) Impact of annealing atmosphere on the multiferroic and dielectric properties of BiFeO3/Bi3.25La0.75Ti3O12 thin films. Appl Phys A 97:699CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Hui Sun
    • 1
  • Baowen Zou
    • 1
  • Xiaoran Ni
    • 1
  • Xiangyu Mao
    • 1
  • Xiaobing Chen
    • 1
  • Jinsong Zhu
    • 2
  1. 1.College of Physics Science and TechnologyYangzhou UniversityYangzhouChina
  2. 2.National Laboratory of Solid State Microstructures and Department of PhysicsNanjing UniversityNanjingChina

Personalised recommendations